zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A class of multiobjective linear programming model with fuzzy random coefficients. (English) Zbl 1165.90701
Summary: The aim of this paper is to deal with a multiobjective linear programming problem with fuzzy random coefficients. Some crisp equivalent models are presented and a traditional algorithm based on an interactive fuzzy satisfying method is proposed to obtain the decision maker’s satisfying solution. In addition, the technique of fuzzy random simulation is adopted to handle general fuzzy random objective functions and fuzzy random constraints which are usually hard to be converted into their crisp equivalents. Furthermore, combined with the techniques of fuzzy random simulation, a genetic algorithm using the compromise approach is designed for solving a fuzzy random multiobjective programming problem. Finally, illustrative examples are given in order to show the application of the proposed models and algorithms.
90C70Fuzzy programming
90C08Special problems of linear programming
90C29Multi-objective programming; goal programming