zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Switched discrete-time systems with time-varying delays: A generalized 2 -approach. (English) Zbl 1165.93309
Summary: We investigate the delay-dependent performance analysis and control synthesis of a class of linear discrete-time hybrid systems with time-varying delays. We employ hybrid Lyapunov-Krasovskii functionals to establish the desired results under arbitrary switching. A generalized 2 approach is adopted and new parameterized linear matrix inequalities (LMIs) characterization are developed to guarantee the delay-dependent asymptotic stability. Design of generalized 2 state feedback and dynamic output-feedback controllers are subsequently constructed. A numerical example is solved in detail to illustrate the theoretical developments.
93B36H -control
93B52Feedback control
[1], Hybrid systems III (1996)
[2], Hybrid systems II (1995)
[3], Gahinet, hybrid systems IV (1997)
[4], Gahinet, hybrid systems V (1997)
[5], Hybrid systems (1993)
[6], Hybrid and real time systems III (1997)
[7], IEEE trans. Automat. control 43 (1998)
[8]Alur, R.; Dills, D. L.: A theory of timed automata, Theoret. comput. Sci. 126, 183-235 (1994) · Zbl 0803.68071 · doi:10.1016/0304-3975(94)90010-8
[9]Alur, R.; Courcoubetis, C.; Halbwachs, N.; Henzinger, T. A.; Ho, P. H.; Nicollin, X.: The algorithmic analysis of hybrid automata, Theoret. comput. Sci. 138, 3-34 (1995) · Zbl 0874.68206 · doi:10.1016/0304-3975(94)00202-T
[10], Automatica 34 (1999)
[11], Hybrid systems: computation and control (1990)
[12], Proceedings of the IEEE 88 (2000)
[13]Branicky, M.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE trans. Automat. control 43, No. 4, 475-582 (1998) · Zbl 0904.93036 · doi:10.1109/9.664150
[14]Cuzzola, F. A.; Morari, M.: A generalized approach for analysis and control of discrete-time piecewise affine and hybrid systems, Hybrid systems: computation and control (2001)
[15]Daafouz, J.; Riedinger, P.; Lung, C.: Stability analysis and control synthesis for switched systems: A hybrid Lyapunov function approach, IEEE trans. Automat. control 47, 1883-1887 (2002)
[16]Decarlo, R.; Branicky, M.; Pettersson, S.; Lennartson, B.: Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of IEEE 88, 1069-1082 (2000)
[17]Koutsoukos, X. D.; Antsaklis, P. J.: Design of stabilizing switching control laws for discrete- and continuous-time linear systems using piecewise-linear Lyapunov functions, Internat. J. Control 75, 932-945 (2002) · Zbl 1016.93062 · doi:10.1080/00207170210151076
[18]Liberzon, D.; Morse, A.: Basic problems in stability and design of switched systems, IEEE control syst. Mag. 19, No. 5, 59-70 (1999)
[19]Michel, A.: Recent trends in the stability analysis of hybrid dynamical systems, IEEE trans. Circuits systems-part I 46, 120-134 (1999) · Zbl 0981.93055 · doi:10.1109/81.739260
[20]Pettersson, S.; Lennartson, B.: Hybrid system stability and robustness verification using linear matrix inequalities, Internat. J. Control 75, 1335-1355 (2002) · Zbl 1017.93027 · doi:10.1080/0020717021000023762
[21]Williams, S. M.; Hoft, R. G.: Adaptive frequency domain control of PPM switched power line conditioner, IEEE trans. Power electron. 6, 665-670 (1991)
[22]Zhai, G.; Lin, H.; Antsaklis, P. J.: Quadratic stabilizability of switched linear systems with polytopic uncertainties, Internat. J. Control 76, 747-753 (2003) · Zbl 1034.93055 · doi:10.1080/0020717031000114968
[23]G. Zhai, Y. Sun, X. Chen, A.N. Michel, Stability and L2 gain analysis for switched symmetric systems with time-delay,in: Proc. American Control Conference, Denver, CO, June 2003, pp. 4–6
[24]Elfara, N. H.; Mhaskar, P.; Christofides, P. D.: Output feedback control of switched nonlinear systems using multiple Lyapunov functions, Systems control lett. 54, 1162-1163 (2005) · Zbl 1129.93497 · doi:10.1016/j.sysconle.2005.04.005
[25]Du, D.; Zhou, S.; Zhang, B.; Oliveita: Generalized H2 output feedback controller design for uncertain discrete-time hybrid systems via switched Lyapunov functions, Nonlinear anal. 65, 2135-2146 (2006) · Zbl 1106.93051 · doi:10.1016/j.na.2005.11.054
[26]Zhai, G.; Shu, B.; Yasuda, K.; Michel, A. N.: Disturbance attenuation properties of time-controlled switched systems, J. franklin inst. 338, 765-779 (2001) · Zbl 1022.93017 · doi:10.1016/S0016-0032(01)00030-8
[27]Stipanovic, D. M.; Siljak, D. D.: Robust stability and stabilization of discrete-time nonlinear systems: the LMI approach, Internat. J. Control 74, 873-879 (2001) · Zbl 1022.93034 · doi:10.1080/00207170010038712
[28]Boukas, E. K.; Mahmoud, M. S.: A practical approach to control of nonlinear discrete-time state-delay systems, Optimal control applications and methods 10, 1-21 (2007)
[29]Kapila, V.; Haddad, W. M.: Memoryless H controllers for discrete-time systems with time-delay, Automatica 34, 1141-1144 (1998) · Zbl 0934.93023 · doi:10.1016/S0005-1098(98)00054-5
[30]Mahmoud, M. S.: Robust H control of discrete systems with uncertain parameters and unknown delays, Automatica 36, 627-635 (2000) · Zbl 0982.93032 · doi:10.1016/S0005-1098(99)00158-2
[31]Mahmoud, M. S.; Xie, L.: Guaranteed cost control of uncertain discrete systems with delays, Internat. J. Control 73, No. 2, 105-114 (2000) · Zbl 1006.93028 · doi:10.1080/002071700219812
[32]Mahmoud, M. S.: Robust stability and H estimation for uncertain discrete systems with state-delay, J. mathematical problems in engineering 7, No. 5, 393-412 (2001) · Zbl 1010.93075 · doi:10.1155/S1024123X01001703
[33]Mahmoud, M. S.; Boukas, E. K.; Shi, P.: Resilient feedback stabilization of discrete-time systems with delays, IMA J. Math. control inform. 24, No. 4, 1-16 (2007)
[34]Mahmoud, M. S.; Shi, P.: Optimal guaranteed cost filtering for Markovian jump discrete-time systems, Math. problems eng. 12, No. 1, 33-48 (2004) · Zbl 1130.93432 · doi:10.1155/S1024123X04108016
[35]Shi, P.; Boukas, E. K.; Agarwal, R. K.: Optimal guaranteed cost control of uncertain discrete time-delay systems, J. comput. Appl. math. 157, 435-451 (2003) · Zbl 1029.93044 · doi:10.1016/S0377-0427(03)00433-3
[36]Song, S. H.; Kim, J. K.: H control of discrete-time linear systems with norm-bounded uncertainties and time-delay in state, Automatica 34, 137-139 (1998) · Zbl 0904.93011 · doi:10.1016/S0005-1098(97)00182-9
[37]Yuan, L.; Axhenie, L. E. K.; Jiang, W.: Robust H control of linear discrete-time systems with norm-bounded time-delay uncertainty, Systems control lett. 27, 199-208 (1996) · Zbl 0875.93108 · doi:10.1016/0167-6911(95)00049-6
[38]Chen, W. H.; Guan, Z. H.; Lu, X.: Delay-dependent guaranteed cost control for uncertain discrete-time systems with delay, IEE proc. Control theory appl. 150, 412-416 (2003)
[39]Basin, M.; Sanchez, E.; Martinez-Zuniga, R.: Optimal linear filtering for systems with multiple state and observation delays, Int. J. Innovative computing, information and control 3, No. 5, 1309-1320 (2007)
[40]Fridman, E.; Shaked, U.: Delay-dependent H control of uncertain discrete delay systems, European J. Control 11, 29-37 (2005)
[41]Mahmoud, M. S.: Resilient control of uncertain dynamical systems, (2004)
[42]Kim, D. K.; Park, P. G.; Ko, J. W.: Output feedback H control of systems over communication networks using a deterministic switching systems approach, Automatica 40, No. 3, 1205-1212 (2004) · Zbl 1056.93527 · doi:10.1016/j.automatica.2004.01.024
[43]Meyer, C.; Schroder, S.; De Doncker, R. W.: Solid-state circuits breakers and current limiters for medium-voltage systems having distributed power systems, IEEE trans. Power electronics 19, 1333-1340 (2004)
[44]Wang, R.; Zhao, J.: Exponential stability analysis for discrete-time switched linear systems with time-delay, Int. J. Of innovative computing, information and control 3, No. 6(B), 1557-1564 (2007)
[45]Sun, X.; Zhao, J.; Hill, D. J.: Stability and L2 gain analysis for switched delay systems: A delay-dependent method, Automatica 42, 1769-1774 (2006) · Zbl 1114.93086 · doi:10.1016/j.automatica.2006.05.007
[46]G. Xie, L. Wang, Quadratic stability and stabilization of discrete-time switched systems with state-delay, in: Proc. 43th IEEE Conference. Decision Control, Atlantis, Paradise Island, Bahamas, Dec. 14–17, 2004, pp. 3235–3240
[47]Zhou, S.; Li, T.: Stabilization of delayed discrete-time fuzzy systems via basis-dependent Lyapunov–karsovskii function, Fuzzy sets systems 151, 139-153 (2005) · Zbl 1142.93379 · doi:10.1016/j.fss.2004.08.014
[48]Sun, Y. G.; Wang, L.; Xie, G.: Delay-dependent robust stability and H control for uncertain discrete-time switched systems with mode-dependent time-delays, Appl. math. Comput. 180, 428-435 (2006) · Zbl 1100.93034 · doi:10.1016/j.amc.2005.12.028
[49]Rotea, M. A.: The generalized H2 control problem, Automatica 29, 373-383 (1993) · Zbl 0772.93027 · doi:10.1016/0005-1098(93)90130-L
[50]Zhang, L.; Shi, P.; Boukas, E. K.: H output-feedback control for switched linear discrete-time systems with time-varying delays, Internat. J. Control 80, 1354-1365 (2007) · Zbl 1133.93316 · doi:10.1080/00207170701377113
[51]Basin, M.; Perez, J.; Calderon-Alvarez, D.: Optimal filtering for linear systems over polynomial observations, Int. J. Of innovative computing, information and control 4, No. 2, 313-320 (2008)
[52]Gao, H.; Chen, T.: New results on stability of discrete-time systems with time-varying state delay, IEEE trans. Automat. control 52, 328-334 (2007)
[53]Gao, H.; Lam, J.; Wang, C.: Model simplification for switched hybrid systems, Systems control lett. 55, 1015-1021 (2006) · Zbl 1120.93311 · doi:10.1016/j.sysconle.2006.06.014
[54]Gao, H.; Lam, J.; Wang, C.; Wang, Y.: Delay-dependent output-feedback stabilization of discrete-time systems time-varying state delay, IEE proc. Control theory appl. 151, 691-698 (2004)
[55]Ghaoui, El; Oustry, L. F.; Rami, M. Ait: A cone complementarity linearization algorithm for static output feedback and related problems, IEEE trans. Automat. control 42, 1171-1176 (1997) · Zbl 0887.93017 · doi:10.1109/9.618250
[56]Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delayed systems, Internat. J. Control 74, 1447-1455 (2001) · Zbl 1023.93055 · doi:10.1080/00207170110067116
[57]Mahmoud, M. S.; Nounou, M. N.; Nounou, H. N.: Analysis and synthesis of uncertain switched discrete-time systems, IMA J. Math. control inform. 24, 245-257 (2007) · Zbl 1127.93050 · doi:10.1093/imamci/dnl021
[58]De Oliveita, M. C.; Geromel, J. C.; Bernussou, J.: Extended H2 and H norm characterizations and controller parameterizations for discrete-time systems, Internat. J. Control 75, 666-679 (2002) · Zbl 1029.93020 · doi:10.1080/00207170210140212
[59]Gahinet, P.; Nemirovski, A.; Laub, A. L.; Chilali, M.: LMI control toolbox, (1995)