zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
BIBO stabilization of piecewise switched linear systems with delays and nonlinear perturbations. (English) Zbl 1165.93338
Summary: This paper deals with Bounded-Input Bounded-Output (BIBO) stabilization of piecewise switched linear systems in presence of delays and nonlinear perturbations. Based on piecewise quadratic Lyapunov functional, the main contribution of the paper is the derivation of sufficient conditions of BIBO stabilization in the form of algebraic Riccati matrix equation. The robust quadratic stability for such system is also discussed. A numerical example is given to illustrate the effectiveness of the theoretical results.
MSC:
93D25Input-output approaches to stability of control systems
93D09Robust stability of control systems
93C73Perturbations in control systems
93C05Linear control systems
References:
[1]De La Sen, M.: Quadratic stability and stabilization of switched dynamic systems with uncommensurate internal point delays, Appl. math. Comput. 185, No. 1, 508-526 (2007) · Zbl 1108.93062 · doi:10.1016/j.amc.2006.07.048
[2]Vu, L.; Chatterjee, D.; Liberzon, D.: Input-to-state stability of switched systems and switching adaptive control, Automatica 43, No. 4, 639-646 (2007)
[3]Liberzon, D.: Switching in systems and control, (2003)
[4]Zhai, G. S.; Hai, L.; Xu, X. P.; Imaea, J.; Kobayashia, T.: Analysis of switched normal discrete-time systems, Nonlinear anal. 66, 1788-1799 (2007) · Zbl 1110.93035 · doi:10.1016/j.na.2006.02.024
[5]Zhang, H. B.; Li, C. G.; Zhang, J.; Liao, X. F.; Yu, J. B.: Controlling chaotic Chua’s circuit based on piecewise quadratic Lyapunov functions method, Chaos, solitons & fractals 22, No. 5, 1053-1061 (2004) · Zbl 1060.93539 · doi:10.1016/j.chaos.2004.02.056
[6]Rantzer, A.; Johansson, M.: Piecewise linear quadratic optimal control, IEEE trans. Automat. contr. 45, No. 4, 629-637 (2000) · Zbl 0969.49016 · doi:10.1109/9.847100
[7]W. Spinelli, P. Bolzern, P. Colaneri, Computation of lower bounds for the optimal quadratic cost of linear switched systems, in: Proc. of the 2006 Am. Contr. Conf., pp. 5444 – 5449.
[8]Du, D. S.; Zhou, S. S.; Zhang, B. Y.: Generalized H2 output feedback controller design for uncertain discrete-time switched systems via switched Lyapunov functions, Nonlinear anal. 65, 2135-2146 (2006) · Zbl 1106.93051 · doi:10.1016/j.na.2005.11.054
[9]Li, P.; Zhong, S. M.: BIBO stabilization of time-delayed system with nonlinear perturbation, Appl. math. Comput. (2007)
[10]Li, P.; Zhong, S. M.: BIBO stabilization for system with multiple mixed delays and nonlinear perturbations, Appl. math. Comput. 196, 207-213 (2008)
[11]Shahruz, S. M.; Sakyaman, N. A.: How to have narrow-stripe semiconductor lasers self-pulsate, Appl. math. Comput. 130, 11-27 (2002) · Zbl 1021.78007 · doi:10.1016/S0096-3003(01)00094-7
[12]Huang, Y. Q.; Zeng, W.; Zhong, S. M.: BIBO stability of continuous time systems, J.UEST China 3, 178-181 (2005)
[13]Michaletzky, G.; Gerencser, L.: BIBO stability of linear switching systems, IEEE trans. Automat. contr. 47, No. 11, 1895-1898 (2002)
[14]Johansson, M.; Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems, IEEE trans. Automat. contr. 43, No. 4, 555-559 (1998) · Zbl 0905.93039 · doi:10.1109/9.664157
[15]Wu, H.; Mizukami, K.: Robust stabilization of uncertain linear dynamical systems, Int. J. Syst. sci. 24, 265-276 (1993) · Zbl 0781.93074 · doi:10.1080/00207729308949487