zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical stability test of neutral delay differential equations. (English) Zbl 1166.65356

Summary: The stability of a delay differential equation can be investigated on the basis of the root location of the characteristic function. Though a number of stability criteria are available, they usually do not provide any information about the characteristic root with maximal real part, which is useful in justifying the stability and in understanding the system performances. Because the characteristic function is a transcendental function that has an infinite number of roots with no closed form, the roots can be found out numerically only. While some iterative methods work effectively in finding a root of a nonlinear equation for a properly chosen initial guess, they do not work in finding the rightmost root directly from the characteristic function.

On the basis of Lambert W function, this paper presents an effective iterative algorithm for the calculation of the rightmost roots of neutral delay differential equations so that the stability of the delay equations can be determined directly, illustrated with two examples.

MSC:
65L07Numerical investigation of stability of solutions of ODE
34K20Stability theory of functional-differential equations
34K28Numerical approximation of solutions of functional-differential equations
34K40Neutral functional-differential equations