zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new reproducing kernel Hilbert space method for solving nonlinear fourth-order boundary value problems. (English) Zbl 1166.65358
Summary: This paper presents a new reproducing kernel Hilbert space method for solving nonlinear fourth-order boundary value problems. It is a relatively new analytical technique. The solution obtained by using the method takes the form of a convergent series with easily computable components. This paper will present a numerical comparison between our method and other methods for solving an open fourth-order boundary value problem presented by M. R. Scott and H. A. Watts [SUPPORT – A computer code for two-point boundary-value problems via orthonormalization, SAND75-0198, Sandia Laboratories, Albuquerque, NM (1975)]. The method is also applied to a nonlinear fourth-order boundary value problem. The numerical results demonstrate that the new method is quite accurate and efficient for fourth-order boundary value problems.
MSC:
65L10Boundary value problems for ODE (numerical methods)
References:
[1]S.M. Momani, Some problems in non-Newtonian fluid mechanics, Ph.D. Thesis, Walse University, United Kingdom, 1991.
[2]Ma, T. F.; Silva, J.: Iteration solution for a beam equation with nonlinear boundary conditions of third order, Applied mathematics and computation 159, No. 1, 11-18 (2004) · Zbl 1095.74018 · doi:10.1016/j.amc.2003.08.088
[3]Chawla, M. M.; Katti, C. P.: Finite difference methods for two-point boundary-value problems involving higher order differential equation, Bit 19, 27-33 (1979) · Zbl 0401.65053 · doi:10.1007/BF01931218
[4]M.R. Scott, H.A.Watts, SUPORT-A computer code for two-point boundary-value problems via orthonormalization, SAND75-0198, Sandia Laboratories, Albuquerque, NM, 1975.
[5]Noor, M. A.; Mohyud-Din, S. T.: Variational iteration technique for solving higher order boundary value problems, Applied mathematics and computation 189, No. 2, 1929-1942 (2007) · Zbl 1122.65374 · doi:10.1016/j.amc.2006.12.071
[6]Momani, S.; Noor, M. A.: Numerical comparison of methods for solving a special fourth-order boundary value problem, Applied mathematics and computation 191, 218-224 (2007) · Zbl 1193.65135 · doi:10.1016/j.amc.2007.02.081
[7]Doedel, E.: Finite difference method for nonlinear two-point boundary-value problems, SIAM journal on numerical analysis 16, 173-185 (1979) · Zbl 0438.65068 · doi:10.1137/0716013
[8]Wazwaz, A. M.: The numerical solution of special fourth-order boundary value problems by the modified decomposition method, International journal of computer mathematics 79, No. 3, 345-356 (2002) · Zbl 0995.65082 · doi:10.1080/00207160211928
[9]Erturk, V. S.; Momani, S.: Comparing numerical method for solving fourth-order boundary value problems, Applied mathematics and computation 188, No. 2, 1963-1968 (2007) · Zbl 1119.65066 · doi:10.1016/j.amc.2006.11.075
[10]Mohyud-Din, S. T.; Noor, M. A.: Homotopy perturbation method for solving fourth-order boundary value problems, Mathematical problems in engineering 2007, 1-15 (2007) · Zbl 1144.65311 · doi:10.1155/2007/98602
[11]Daniel, Alpay: Reproducing kernel spaces and applications, (2003)
[12]Berlinet, Alain; Thomas-Agnan, Christine: Reproducing kernel Hilbert space in probability and statistics, (2004)
[13]Geng, Fazhan; Cui, Minggen: Solving singular nonlinear second-order periodic boundary value problems in the reproducing kernel space, Applied mathematics and computation 192, 389-398 (2007) · Zbl 1193.34017 · doi:10.1016/j.amc.2007.03.016
[14]Geng, Fazhan; Cui, Minggen: Solving a nonlinear system of second order boundary value problems, Journal of mathematical analysis and applications 327, 1167-1181 (2007) · Zbl 1113.34009 · doi:10.1016/j.jmaa.2006.05.011
[15]Geng, Fazhan; Cui, Minggen: Solving singular nonlinear two-point boundary value problems in the reproducing kernel space, Journal of the korean mathematical society 45, No. 3 (2008) · Zbl 1154.34012 · doi:10.4134/JKMS.2008.45.3.631
[16]Cui, Minggen; Geng, Fazhan: Solving singular two-point boundary value problem in reproducing kernel space, Journal of computational and applied mathematics 205, 6-15 (2007) · Zbl 1149.65057 · doi:10.1016/j.cam.2006.04.037
[17]Cui, Minggen; Geng, Fazhan: A computational method for solving one-dimensional variable-coefficient Burgers equation, Applied mathematics and computation 188, 1389-1401 (2007) · Zbl 1118.35348 · doi:10.1016/j.amc.2006.11.005
[18]Cui, Minggen; Lin, Yingzhen: A new method of solving the coefficient inverse problem of differential equation, Science in China series A 50, No. 4, 561-572 (2007)
[19]Cui, Minggen; Chen, Zhong: The exact solution of nonlinear age-structured population model, Nonlinear analysis: real world applications 8, 1096-1112 (2007) · Zbl 1124.35030 · doi:10.1016/j.nonrwa.2006.06.004
[20]Li, Chunli; Cui, Minggen: The exact solution for solving a class nonlinear operator equations in the reproducing kernel space, Applied mathematics and computation 143, No. 2 – 3, 393-399 (2003) · Zbl 1034.47030 · doi:10.1016/S0096-3003(02)00370-3