zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy random variables. (English) Zbl 1166.91018
Author’s abstract: There are two important sources of uncertainty: randomness and fuzziness. Randomness models the stochastic variability of all possible outcomes of a situation, and fuzziness relates to the unsharp boundaries of the parameters of the model. In this sense, randomness is largely an instrument of a normative analysis that focuses on the future, while fuzziness is more an instrument of a descriptive analysis reflecting the past and its implications. Clearly, randomness and fuzziness are complementary, and so a natural question is how fuzzy variables could interact with the type of random variables found in actuarial science. This article focuses on one important dimension of this issue, fuzzy random variables (FRVs). The goal is to introduce IME readers to FRVs and to illustrate how naturally compatible and complementary randomness and fuzziness are.
MSC:
91B44Informational economics
68T37Reasoning under uncertainty
03E72Fuzzy set theory
References:
[1]Buckley, J. J.: Fuzzy probabilities, (2005)
[2]Chao, R.-J., Ayyub, B.M., 1995, Distributions with Fuzziness and Randomness, In: Proceedings of ISUMA-NAFIPS’95, 668–673
[3]Colubi, A.; Dominguez-Menchero, J. S.; Lopez-Diaz, M.; Ralescu, D. A.: On the formalization of fuzzy random variables, Information sciences 133, 3-6 (2001) · Zbl 0988.28008 · doi:10.1016/S0020-0255(01)00073-1
[4]De Vylder, F. E.: Advanced risk theory: A self-contained introduction, Actuariat (1996)
[5]Diamond, P.; Kloeden, P.: Metric spaces of fuzzy sets: theory and applications, (1994)
[6]Dionne, G.; Vanasse, C.: A generalization of automobile insurance rating models: the negative binomial distribution with a regression component, Astin bulletin 19, No. 2 (1989)
[7]Dubois, D.; Prade, J.: Fuzzy sets and systems: theory and applications, Mathematics in science and engineering 144 (1980) · Zbl 0444.94049
[8]Feng, Y.; Hu, L.; Shu, H.: The variance and covariance off fuzzy random variables and their applications, Fuzzy sets and systems 120, 487-497 (2001) · Zbl 0984.60029 · doi:10.1016/S0165-0114(99)00060-3
[9]Gil, M. Á: Fuzzy random variables: development and state of the art, (2004)
[10]Gil, M. Á.; López-Díaz, M.; Ralescu, D. A.: Overview on the development of fuzzy random variables, Fuzzy sets and systems 157, 2546-2557 (2006) · Zbl 1108.60006 · doi:10.1016/j.fss.2006.05.002
[11]Giles, J. R.: Introduction to the analysis of metric spaces, (1987) · Zbl 0645.46001
[12]González-Rodríguez, G.; Colubi, A.; Gil, M. Á: A fuzzy representation of random variables: an operational tool in exploratory analysis and hypothesis testing, Comput. statist. Data anal. 51, 163-176 (2006) · Zbl 1157.62303 · doi:10.1016/j.csda.2006.04.006
[13]Goodman, I. R.: Fuzzy sets as equivalent classes of random sets, Fuzzy sets and possibility theory, 327-343 (1982)
[14]Hirota, K.: Concepts of probabilistic sets, Fuzzy sets and systems 5, 31-46 (1981) · Zbl 0442.60008 · doi:10.1016/0165-0114(81)90032-4
[15]Kato, Y., Izuka, T., Ohtsuki, R., Yamaguchi, S., 1999. A proposal for a new fuzzy probability distribution function, 1999 IEEE International Fuzzy Systems Conference Proceedings, 1334–1339
[16]Klement, E. P.; Puri, M. L.; Ralescu, D. A.: Limit theorems for fuzzy random variables, Proceedings of the royal society of London A 407, 171-182 (1986) · Zbl 0605.60038 · doi:10.1098/rspa.1986.0091
[17]Koissi, M-C; Shapiro, A. F.: Fuzzy formulation of Lee–Carter mortality model, Insurance: mathematics economics 39, No. 3, 287-309 (2006)
[18]Krätschmer, V.: A unified approach to fuzzy random variables, Fuzzy sets and systems 123, 1-9 (2001) · Zbl 1004.60003 · doi:10.1016/S0165-0114(00)00038-5
[19]Kruse, R.; Meyer, K. D.: Statistics with vague data, (1987)
[20]Kwakernaak, H.: Fuzzy random variables–I. Definitions and theorems, Information sciences 15, No. 1, 1-29 (1978) · Zbl 0438.60004 · doi:10.1016/0020-0255(78)90019-1
[21]Kwakernaak, H.: Fuzzy random variables–II. Algorithms and examples for the discrete case, Information sciences 17, No. 3, 253-278 (1979) · Zbl 0438.60005 · doi:10.1016/0020-0255(79)90020-3
[22]Liu, B.: Uncertainty theory: an introduction to its axiomatic foundations, (2004)
[23]López-Díaz, M.; Ralescu, D. A.: Tools for fuzzy random variables: embeddings and measurabilities, Computational statistics data analysis 51, 109-114 (2006) · Zbl 1157.62305 · doi:10.1016/j.csda.2006.04.017
[24]Möller, B.: Fuzzy randomness – a contribution to imprecise probability, Zamm 84, No. 10-11, 754-764 (2004) · Zbl 1059.60006 · doi:10.1002/zamm.200410153
[25]Möller, B., Beer, M., Reuter, U., 2005. Theoretical basics of fuzzy randomness – application to time series with fuzzy data, In: ICOSSAR 2005, pp. 1701–1707
[26]Näther, W.: Random fuzzy variables of second order and applications to statistical inference, Information sciences 133, 69-88 (2001) · Zbl 1042.62066 · doi:10.1016/S0020-0255(01)00077-9
[27]Nguyen, H. T.; Wu, B.: Fundamentals of statistics with fuzzy data, (2006)
[28]Puri, M. L.; Ralescu, D. A.: Fuzzy random variables, Journal of mathematical analysis and applications 114, 409-422 (1986) · Zbl 0592.60004 · doi:10.1016/0022-247X(86)90093-4
[29]Shapiro, A. F.: Fuzzy logic in insurance, Insurance: math. Econom. 35, 399-424 (2004) · Zbl 1093.91028 · doi:10.1016/j.insmatheco.2004.07.010
[30], Soft computing and intelligent systems: theory and applications (2000)
[31]Taylor, A. E.: Introduction to functional analysis, (1958) · Zbl 0081.10202
[32]Viertl, R.; Hareter, D.: Generalized Bayes theorem for non-precise a-priori distribution, Metrika 59, 263-273 (2004) · Zbl 1147.62301 · doi:10.1007/s001840300283
[33]Wong, Y. -C.: Introductory theory of topological vector spaces, (1992) · Zbl 0759.46001
[34]Zadeh, L. A.: Probability measures of fuzzy events, Journal of mathematical analysis and applications 23, 421-427 (1968) · Zbl 0174.49002 · doi:10.1016/0022-247X(68)90078-4
[35]Zadeh, L.A., 1975, The concept of a linguistic variable and its application to approximate reasoning, Part 1. Inform. Sci. 8, 199-249; Part 2. Inform. Sci. 8, 301-353; Part 3, Inform. Sci. 9, 43-80 · Zbl 0404.68075
[36]Zadeh, L. A.: Fuzzy set as the basis for the theory of possibility, Fuzzy sets and systems 1, 3-28 (1978) · Zbl 0377.04002 · doi:10.1016/0165-0114(78)90029-5
[37]Zadeh, L. A.: Fuzzy probabilities, Inf. process. Manage. 20, No. 3, 363-372 (1984) · Zbl 0543.60007 · doi:10.1016/0306-4573(84)90067-0
[38]Zadeh, L. A.: T.rossj.m.bookerw.j.parkinsonfuzzy logic and probability applications: bridging the gap, Fuzzy logic and probability applications: bridging the gap (2002)
[39]Zhong, C., Zhou, C., 1987, The Equivalence of Two Definition of Fuzzy Random Variables, in: Preprints of 2nd IFSA Congress, 59-62