zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new design method based on artificial bee colony algorithm for digital IIR filters. (English) Zbl 1166.93351
Summary: Digital filters can be broadly classified into two groups: recursive (Infinite Impulse Response (IIR)) and non-recursive (Finite Impulse Response (FIR)). An IIR filter can provide a much better performance than the FIR filter having the same number of coefficients. However, IIR filters might have a multi-modal error surface. Therefore, a reliable design method proposed for IIR filters must be based on a global search procedure. Artificial Bee Colony (ABC) algorithm has been recently introduced for global optimization. The ABC algorithm simulating the intelligent foraging behaviour of honey bee swarm is a simple, robust, and very flexible algorithm. In this work, a new method based on ABC algorithm for designing digital IIR filters is described and its performance is compared with that of a conventional optimization algorithm (LSQ-nonlin) and particle swarm optimization algorithm.
MSC:
93C62Digital control systems
62P20Applications of statistics to economics
92D50Animal behavior
References:
[1]Gulzow, T.; Ludwig, T.; Heute, U.: Spectral-subtraction speech enhancement in multirate systems with and without non-uniform and adaptive bandwidths, Signal processing 83, 1613-1631 (2003) · Zbl 1144.94337 · doi:10.1016/S0165-1684(03)00080-X
[2]Kliewer, J.; Karp, T.; Mertins, A.: Processing arbitrary-length signals with linear-phase cosine-modulated filter banks, Signal processing 80, 1515-1533 (2000)
[3]Zhang, X.; Iwakura, H.: Design of IIR digital filters based on eigenvalue problem, IEEE transactions on signal processing 44, 1325-1333 (1996)
[4]Lu, W. S.; Hinamoto, T.: Optimal design of IIR digital filters with robust stability using conic-quadraic-programming updates, IEEE transactions on signal processing 51, 1581-1592 (2003)
[5]Shynk, J. J.: Adaptive IIR filtering, IEEE ASSP magazine 6, 4-21 (1989)
[6]Stearns, S. D.: Error surface of recursive adaptive filters, IEEE transactions on acoustics, speech and signal processing 29, 763-766 (1981) · Zbl 0522.93058 · doi:10.1109/TASSP.1981.1163588
[7]Radenkovic, M.; Bose, T.: Adaptive IIR filtering of nonstationary signals, Signal processing 81, 183-195 (2001) · Zbl 1098.94580 · doi:10.1016/S0165-1684(00)00196-1
[8]R. Nambiar, P. Mars, Genetic and annealing approaches to adaptive digital filtering, in: IEEE 26th Asilomar Conference on Signals, Systems and Computers, 1992, pp. 871 – 875.
[9]Radecki, J.; Konrad, J.; Dubois, E.: Design of multidimensional finite-wordlength FIR and IIR filters by simulated annealing, IEEE transactions on circuits and systems II: Analog and digital signal processing 42, 424-431 (1995) · Zbl 0835.93031 · doi:10.1109/82.392318
[10]Chen, S.; Istepanian, R. H.; Luk, B. L.: Digital IIR filter design using adaptive simulated annealing, Digital signal processing 11, 241-251 (2001)
[11]Etter, D. M.; Hicks, M. J.; Cho, K. H.: Recursive adaptive filter design using an adaptive genetic algorithm, IEEE international conference on ASSP, 635-638 (1982)
[12]Tang, K. S.; Man, K. F.; Kwong, S.; He, Q.: Genetic algorithms and their applications, IEEE signal processing magazine 13, 22-37 (1996)
[13]Ng, S. C.; Leung, S. H.; Chung, C. Y.; Luk, A.; Lau, W. H.: The genetic search approach: a new learning algorithm for IIR filtering, IEEE signal processing magazine 13, 38-46 (1996)
[14]Thamvichai, R.; Bose, T.; Haupt, R. L.: Design of 2-D multiplierless IIR filters using the genetic algorithm, IEEE transactions on circuits and systems — I: Fundamental theory and applications 49, 878-882 (2002)
[15]Lee, A.; Ahmadi, M.; Jullien, G.; Miller, W.; Lashkari, R. S.: Design of 1-D FIR filters with genetic algorithms, IEEE international symposium on circuits and systems, 295-298 (1999)
[16]Mastorakis, N. E.; Gonos, I. F.; Swamy, M. N. S.: Design of two dimensional recursive filters using genetic algorithms, IEEE transactions on circuits and systems — I: Fundamental theory and applications 50, 634-639 (2003)
[17]Karaboga, N.: Digital IIR filter design using differential evolution algorithm, EURASIP journal on applied signal processing 8, 1-9 (2005)
[18]Karaboga, N.; Cetinkaya, B.: Design of digital FIR filters by using differential evolution algorithm, Circuits systems and signal processing journal 25, 649-660 (2006) · Zbl 1130.94308 · doi:10.1007/s00034-005-0721-7
[19]Engelbrecht, A. P.: Fundamentals of computational swarm intelligence, (2006)
[20]J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the 1995 IEEE International Conference on Neural Networks, 1995, pp. 1942 – 1948.
[21]V. Aggarwal, W.O. Jin, U.M. O’Reilly, Filter approximation using explicit time and frequency domain specifications, in: Proceedings of the Eighth Annual Conference on Genetic and Evolutionary Computation, 2006, pp. 753 – 760.
[22]W.P. Huang, L.F. Zhou, J.X. Qian, FIR filter design: frequency sampling filters by particle swarm optimization algorithm, in: Proceedings of the Third International Conference on Machine Learning and Cybernetics, 2004, pp. 2322 – 2327.
[23]V. Miranda, N. Fonseca, New evolutionary particle swarm algorithm (EPSO) applied to voltage/VAR control, in: Proceedings of the 14th Power Systems Computation Conference, Spain, 2002 [online], available at: nbsp;http://www.pscc02.org/papers/s21pos.pdfnbsp;.
[24]D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
[25]Basturk, B.; Karaboga, D.: An artificial bee colony (ABC) algorithm for numeric function optimization, IEEE swarm intelligence symposium (2006)
[26]Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of global optimization 39, 459-471 (2007) · Zbl 1149.90186 · doi:10.1007/s10898-007-9149-x
[27]Chen, S.; Luk, B. L.: Adaptive simulated annealing for optimisation in signal processing applications, Signal processing 79, 117-128 (1999) · Zbl 1001.94002 · doi:10.1016/S0165-1684(99)00084-5
[28]Ponton, J. W.; Klemes, J.: Alternatives to neural networks for inferential measurement, Computers and chemical engineering 17, 42-47 (1993)
[29]White, M. S.; Flockton, S. J.: Adaptive recursive filtering using evolutionary algorithms, Evolutionary algorithms in engineering applications, 361-376 (1997)