zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On Hilbert type inequalities with non-conjugate parameters. (English) Zbl 1167.26315
Different versions of the Hilbert inequality has been investigated by many mathematicians, see [A. Kufner, L. Maligranda and L.-E. Persson, The Hardy inequality. About its history and some related results, Pilsen: Vydavatelský Servis (2007; Zbl 1213.42001)]. Utilizing the properties of rearrangement of a function, the authors present some Hilbert type inequalities with non-conjugate parameters and by using a new analytic technique they find the best possible constants in these inequalities.
26D10Inequalities involving derivatives, differential and integral operators
26D15Inequalities for sums, series and integrals of real functions
46E30Spaces of measurable functions
[1]Kuang, Jichang: Applied inequalities, (2004)
[2]Mitrinovic, D. S.; Pecaric, J. E.; Fink, A. M.: Inequalities involving functions and their integrals and derivatives, (1991) · Zbl 0744.26011
[3]Yang, Bicheng; Rassias, T. M.: On the way of weight coefficient and research for the Hilbert-type inequalities, Math. inequal appl. 6, No. 4, 625-658 (2003) · Zbl 1046.26012
[4]Gao, Ming-Zhe; Hsu, L. C.: A survey of various refinements and generalizations of Hilbert inequalities, J. math. Res. exposition 25, 227-243 (2005) · Zbl 1079.26017
[5]Kuang, Jichang; Rassias, T. M.: Hilbert integral operator inequalities, Math. inequal appl. 3, No. 4, 497-510 (2000) · Zbl 0968.26011
[6]Kuang, Jichang; Debnath, L.: The general form of Hilbert’s inequality and its converses, Anal. math. 31, 163-173 (2005) · Zbl 1082.26016 · doi:10.1007/s10476-005-0011-4
[7]Yang, Bicheng: On the extended Hilbert’s integral inequality and applications, Int. rev. Pure appl. Math. 1, No. 1, 1-12 (2005)
[8]Hardy, G. H.; Littlewood, J. E.; Polya, G.: Inequalities, (1952) · Zbl 0047.05302
[9]Levin, V.: Two remarks on Hilbert’s double series theorem, J. indian math. Soc. 11, 111-115 (1937) · Zbl 0015.15602
[10]Bonsall, F. F.: Inequalities with non-conjugate parameters, Quart. J. Math 22, 135-150 (1951) · Zbl 0042.06303 · doi:10.1093/qmath/2.1.135
[11]Folland, G. B.: Real analysis: modern techniques and their applications, (1999) · Zbl 0924.28001
[12]Ziemer, William P.: Weakly differentiable functions, (1989)