zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Gamma function inequalities. (English) Zbl 1167.33001
Some new inequalities for Euler’s gamma function are derived and proved.
MSC:
33B15Gamma, beta and polygamma functions
26D10Inequalities involving derivatives, differential and integral operators
References:
[1]Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)
[2]Alsina, C., Tomás, M.S.: A geometrical proof of a new inequality for the gamma function. J. Inequal. Pure Appl. Math. 6(2), Art. 48 (2005)
[3]Alzer, H.: Inequalities for the gamma function. Proc. Am. Math. Soc. 128, 141–147 (1999) · Zbl 0966.33001 · doi:10.1090/S0002-9939-99-04993-X
[4]Alzer, H.: A power mean inequality for the gamma function. Monatsh. Math. 131, 179–188 (2000) · Zbl 0964.33002 · doi:10.1007/s006050070007
[5]Alzer, H.: Mean-value inequalities for the polygamma functions. Aequ. Math. 61, 151–161 (2001) · Zbl 0968.33003 · doi:10.1007/s000100050167
[6]Alzer, H.: On a gamma function inequality of Gautschi. Proc. Edinb. Math. Soc. 45, 589–600 (2002) · Zbl 1013.33001 · doi:10.1017/S0013091501000943
[7]Alzer, H.: Inequalities involving Γ (x) and Γ (1/x). J. Comput. Appl. Math. 192, 460–480 (2006) · Zbl 1091.33001 · doi:10.1016/j.cam.2005.04.063
[8]Alzer, H., Berg, C.: Some classes of completely monotonic functions, II. Ramanujan J. 11, 225–248 (2006) · Zbl 1110.26015 · doi:10.1007/s11139-006-6510-5
[9]Alzer, H., Ruscheweyh, S.: A subadditive property of the gamma function. J. Math. Anal. Appl. 285, 564–577 (2003) · Zbl 1129.33300 · doi:10.1016/S0022-247X(03)00425-6
[10]Daróczy, Z.: On the general solution of the functional equation f(x + y xy) + f(xy) = f(x) + f(y). Aequ. Math. 6, 130–132 (1971) · Zbl 0222.39003 · doi:10.1007/BF01819743
[11]Davidson, T.M.K.: The complete solution of Hosszú’s functional equation over a field. Aequ. Math. 11, 273–276 (1974) · Zbl 0289.39004 · doi:10.1007/BF01834926
[12]Davis, P.J.: Leonhard Euler’s integral: a historical profile of the gamma function. Amer. Math. Mon. 66, 849–869 (1959) · Zbl 0091.00506 · doi:10.2307/2309786
[13]Gautschi, W.: A harmonic mean inequality for the gamma function. SIAM J. Math. Anal. 5, 278–281 (1974) · Zbl 0276.33003 · doi:10.1137/0505030
[14]Gautschi, W.: Some mean value inequalities for the gamma function. SIAM J. Math. Anal. 5, 282–292 (1974) · Zbl 0276.33004 · doi:10.1137/0505031
[15]Gautschi, W.: The incomplete gamma function since Tricomi. In: Tricomi’s Ideas and Contemporary Applied Mathematics, Atti Convegni Lincei, vol. 147, pp. 203–237. Accad. Naz. Lincei, Rome (1998)
[16]Giordano, C., Laforgia, A.: Inequalities and monotonicity properties for the gamma function. J. Comput. Appl. Math. 133, 387–396 (2001) · Zbl 0985.33003 · doi:10.1016/S0377-0427(00)00659-2
[17]Kershaw, D., Laforgia, A.: Monotonicity results for the gamma function. Atti Accad. Scienze Torino 119, 127–133 (1985)
[18]Kim, T., Adiga, C.: On the q-analogue of gamma functions and related inequalities. J. Inequal. Pure Appl. Math. 6(4), Art. 118 (2005)
[19]Laforgia, A., Sismondi, S.: A geometric mean inequality for the gamma function. Boll. Un. Ital. A 3(7), 339–342 (1989)
[20]Lucht, L.G.: Mittelwertungleichungen für Lösungen gewisser Differenzengleichungen. Aequ. Math. 39, 204–209 (1990) · Zbl 0705.39002 · doi:10.1007/BF01833151
[21]Maksa, G., Páles, Z.: On Hosszú’s functional inequality. Publ. Math. Debrecen 36, 187–189 (1989)
[22]McD. Mercer, A.: Some new inequalities for the gamma, beta and zeta functions. J. Inequal. Pure Appl. Math. 7(1), Art. 29 (2006)
[23]Mitrinović, D.S.: Analytic Inequalities. Springer, New York (1970)
[24]Neuman, E.: Inequalities involving a logarithmically convex function and their applications to special functions. J. Inequal. Pure Appl. Math. 7(1), Art. 16 (2006)
[25]Sándor, J.: A note on certain inequalities for the gamma function. J. Inequal. Pure Appl. Math. 6(3), Art. 61 (2005)
[26]Webster, R.J.: cos(sinx) |cosx| |sin(cosx)|. Math. Gaz. 68, 37 (1984) · doi:10.2307/3615389
[27]Wright, E.M.: A generalisation of Schur’s inequality. Math. Gaz. 40, 217 (1956) · Zbl 0074.04002 · doi:10.2307/3608827