zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Positive solutions for singular second order Neumann boundary value problems via a cone fixed point theorem. (English) Zbl 1167.34313

Summary: We consider the existence of positive solutions for the singular second order Neumann boundary value problem

x n +k 2 x=f(t)g(t,x),0<t<1,x ' (0)=x ' (1)=0;

where k(0,π 2) source is a constant, g(t,x) is monotone locally with respect to x and f(t), g(t,x) may be singular at t=0, t=1 and x=0.

34B18Positive solutions of nonlinear boundary value problems for ODE
34B16Singular nonlinear boundary value problems for ODE
47N20Applications of operator theory to differential and integral equations
[1]Agarwal, R. P.; O’regan, D.: Nonlinear superlinear singular and nonsingular second order boundary value problems, J. diff. Eq. 143, 60-95 (1998) · Zbl 0902.34015 · doi:10.1006/jdeq.1997.3353
[2]Agarwal, R. P.; O’regan, D.: Positive solution for (p,n-p) conjugate boundary value problems, J. diff. Eq. 150, 462-473 (1998) · Zbl 0920.34027 · doi:10.1006/jdeq.1998.3501
[3]Agarwal, R. P.; O’regan, D.: Singular boundary value problems for superlinear second order and delay differential equations, J. diff. Eq. 130, 335-355 (1996) · Zbl 0863.34022 · doi:10.1006/jdeq.1996.0147
[4]Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040
[5]Dang, H.; Oppenheimer, S. F.: Existence and uniqueness results for some nonlinear boundary value problems, J. math. Anal. appl. 198, 35-48 (1996) · Zbl 0855.34021 · doi:10.1006/jmaa.1996.0066
[6]Jiang, D.; Liu, H.: Existence of positive solutions for second order Neumann boundary value problems, J. math. Res. exposit. 20, 360-364 (2000) · Zbl 0963.34019
[7]Ma, R.: Existence of positive radial solutions for elliptic systems, J. math. Anal. appl. 201, 375-386 (1996) · Zbl 0859.35040 · doi:10.1006/jmaa.1996.0261
[8]O’regan, D.: Singular Dirichlet boundary value problems – I superlinear, and nonresonant case, Nonlinear anal. 29, 221-245 (1997) · Zbl 0884.34028 · doi:10.1016/S0362-546X(96)00026-0
[9]Rachunkova, I.; Stanek, S.: Topological degree method in functional boundary value problems at resonance, Nonlinear anal. 27, 271-285 (1996) · Zbl 0853.34062 · doi:10.1016/0362-546X(95)00060-9
[10]Taliaferro, S. D.: A nonlinear singular boundary value problem, Nonlinear anal. 3, 897-904 (1979) · Zbl 0421.34021 · doi:10.1016/0362-546X(79)90057-9