zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global exponential stability of periodic solution of neural network with variable coefficients and time-varying delays. (English) Zbl 1167.34373
Summary: By using the continuation theorem of Mawhin’s coincidence degree theory and some inequality techniques, some new sufficient conditions are obtained ensuring existence and global exponential stability of periodic solution of neural networks with variable coefficients and time-varying delays. These results are helpful to design globally exponentially stable and oscillatory neural networks. Finally, the validity and performance of the obtained results are illustrated by two examples.
MSC:
34K13Periodic solutions of functional differential equations
34K20Stability theory of functional-differential equations
References:
[1]Zhang, Y.; Pheng, H. A.; Vadakkepat, P.: Absolute periodicity and absolute stability of delayed neural networks, IEEE trans. Circuits syst. I 49, 256-261 (2002)
[2]Townley, S.: IEEE trans. Neural networks, IEEE trans. Neural networks 11, 205-214 (2000)
[3]Gopalsamy, K.; Sariyasa: Time delays and stimulus-dependent pattern formation in periodic environments in isolated neurons, IEEE trans. Neural networks 13, No. 3, 551-563 (2002)
[4]Huang, C.; Huang, L.: Existence and global exponential stability of periodic solution of two-neuron networks with time-varying delays, Appl. math. Lett. 19, 126-134 (2006) · Zbl 1096.34051 · doi:10.1016/j.aml.2005.04.001
[5]Huang, L.; Huang, C.; Liu, B.: Dynamics of a class of cellular neural networks with time-varying delays, Phys. lett. A 345, 330-344 (2005)
[6]Huang, H.; Ho, D.; Cao, J.: Analysis of global exponential stability and periodic solutions of neural networks with time-varying delays, Neural networks 18, 161-170 (2005) · Zbl 1078.68122 · doi:10.1016/j.neunet.2004.11.002
[7]Jiang, H.; Cao, J.; Teng, Z.: Dynamics of Cohen – Grossberg neural networks with time-varying delays, Phys. lett. A 354, No. 5 – 6, 414-422 (2006)
[8]Li, Y.; Zhu, L.; Liu, P.: Existence and stability of periodic solutions of delayed cellular neural networks, Nonlinear anal. Real world appl. 7, 225-234 (2006) · Zbl 1086.92002 · doi:10.1016/j.nonrwa.2005.02.004
[9]Liao, X.; Li, C.; Wong, K.: Criteria for exponential stability of Cohen – Grossberg neural networks, Neural networks 17, 1401-1414 (2004) · Zbl 1073.68073 · doi:10.1016/j.neunet.2004.08.007
[10]Liu, B.; Huang, L.: Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, Phys. lett. A 349, 274-483 (2006) · Zbl 1195.34061 · doi:10.1016/j.physleta.2005.09.064
[11]Liu, Z.; Liao, L.: Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, J. math. Anal. appl. 290, 247-262 (2004) · Zbl 1055.34135 · doi:10.1016/j.jmaa.2003.09.052
[12]Mohamad, S.; Gopalsamy, K.: Dynamics of a class of discrete-time neural networks and their continuous-time counter parts, Math. comput. Simul. 53, 1-39 (2000)
[13]Stamov, G.; Stamova, I.: Almost periodic solutions for impulsive neural networks with delay, Appl. math. Modell. 31, 1263-1270 (2007) · Zbl 1136.34332 · doi:10.1016/j.apm.2006.04.008
[14]Sun, C.; Feng, C.: Exponential periodicity and stability of delayed neural networks, Math. comput. Simulat. 66, 469-478 (2004) · Zbl 1057.34097 · doi:10.1016/j.matcom.2004.03.001
[15]Wei, Z.; Huang, L.; Meng, Y.: Unboundedness and periodicity of solutions for a discrete-time network model of three neurons, Appl. math. Modell. 32, 1463-1474 (2008) · Zbl 1176.39012 · doi:10.1016/j.apm.2007.06.016
[16]Yang, X.; Liao, X.; Megson, G.; Evans, D.: Global exponential periodicity of a class of neural networks with recent-history distributed delays, Chaos solitons fract. 25, 441-447 (2005) · Zbl 1064.92004 · doi:10.1016/j.chaos.2004.11.014
[17]Zhou, J.; Liu, Z.; Chen, G.: Dynamics of periodic delayed neural networks, Neural networks 17, 87-101 (2004) · Zbl 1082.68101 · doi:10.1016/S0893-6080(03)00208-9
[18]Zeng, Z.; Huang, D.; Wang, Z.: Pattern memory analysis based on stability theory of cellular neural networks, Appl. math. Modell. 32, 112-121 (2008) · Zbl 1160.34067 · doi:10.1016/j.apm.2006.11.010
[19]Gaines, R.; Mawhin, J.: Coincide degree and nonlinear differential equations, (1977)
[20]Lasalle, J.: The stability of dynamical system, (1976)