zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Extended tanh-function method and its applications to nonlinear equations. (English) Zbl 1167.35331
Summary: An extended tanh-function method is proposed for constructing multiple travelling wave solutions of nonlinear partial differential equations (PDEs) in a unified way. The key idea of this method is to take full advantages of a Riccati equation involving a parameter and use its solutions to replace the tanh function in the tanh-function method. It is quite interesting that the sign of the parameter can be used to exactly judge the numbers and types of these travelling wave solutions. In addition, by introducing appropriate transformations, it is shown that the extended tanh-function method still is applicable to nonlinear PDEs whose balancing numbers may be any nonzero real numbers. Some illustrative equations are investigated by this means and new travelling wave solutions are found.

35G20General theory of nonlinear higher-order PDE
35Q53KdV-like (Korteweg-de Vries) equations