zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Partial synchronization in linearly and symmetrically coupled ordinary differential systems. (English) Zbl 1167.37019

The paper studies the following general model of a coupled system composed from linearly and symmetrically coupled ordinary differential equations:

dx i (t) dt=f(x i (t),t)+ε j=1 m a ij Γx j (t),i=1,2,,m,(1)

where m>1 is the network size, x i n is the state variable of the i-th oscillator, t[0,+) is a continuous time, f: n ×[0,+) n is a continuous map, A=(a ij ) m×m is a coupling matrix with a ij =a ji and -1a ij 1, for all i,j=1,,m, which is determined by the topological structure of the network, ε>0 is the coupling strength, and Γ=diag{γ 1 ,γ 2 ,,γ n } with γ i 0 for all i=1,2,,n, and i=1 n γ i >0. The synchronization phenomena in system (1) are investigated via invariant synchronization manifolds. By means of decomposing the whole space into a direct sum of the synchronization manifold and the transverse space, several criteria for the global asymptotic attractiveness of the invariant synchronization manifold are given. Combining these criteria with some numerical examples, it is shown how topological structure affects partial synchronization. A valuable discussion about the possibility of partial synchronization with increasing coupling strength ε is presented. The results on simulations of several numerical examples (coupled 3-D neural networks, coupled Chua circuits, and coupled Lorenz oscillators) are given.

MSC:
37D10Invariant manifold theory
34D05Asymptotic stability of ODE
References:
[1]Strogatz, S. H.: Exploring complex networks, Nature 410, No. 6825, 268-276 (2001)
[2]Albert, R.; Barabási, A. L.: Statistic mechanics of complex networks, Rev. modern phys. 74, 47-91 (2002) · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[3]Wang, X. F.; Chen, G.: Complex networks: small-world, scale-free and beyond, IEEE circuits syst. Mag. 3, No. 1, 6-20 (2003)
[4]Huygens, C.: Horoloquim oscillatorium, (1672)
[5]Vanwiggeren, G. D.; Roy, P.: Communication with chaotic laser, Science 279, No. 20, 1198-1200 (1998)
[6]De S. Vieira, M.: Chaos and synchronized chaos in an earthquake model, Phys. rev. Lett. 82, No. 1, 201-204 (1999)
[7]Hoppensteadt, F. C.; Izhikevich, E. M.: Pattern recognition via synchronization in phase-locked loop neural networks, IEEE trans. Neural netw. 11, 734-738 (2000)
[8]Belykh, V. N.; Belykh, I. V.; Hasler, M.: Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems, Phys. rev. E 62, No. 5, 6332-6345 (2000)
[9]Belykh, I. V.; Belykh, V. N.; Nevidin, K. V.; Hasler, M.: Persistent clusters in lattices of coupled nonidentical chaotic systems, Chaos 13, No. 1, 165-178 (2003) · Zbl 1080.37525 · doi:10.1063/1.1514202
[10]Belykh, V. N.; Belykh, I. V.; Hasler, M.; Nevidin, K. V.: Cluster synchronization in three-dimensional lattices of diffusively coupled oscillators, Internat. J. Bifur. chaos 13, No. 4, 755-779 (2003)
[11]Pogromsky, A.; Santoboni, G.; Nijmeijer, H.: Partial synchronization: from symmetry towards stability, Physica D 172, No. 1–4, 65-87 (2002)
[12]Qin, W. X.; Chen, G. R.: Coupling schemes for cluster synchronization in coupled Josephson equations, Physica D 197, No. 3–4, 375-391 (2004) · Zbl 1066.34046 · doi:10.1016/j.physd.2004.07.011
[13]Ma, Z. J.; Liu, Z. R.: A new method to realize cluster synchronization in connected chaotic networks, Chaos 16, No. 2, 023103 (2006) · Zbl 1146.37330 · doi:10.1063/1.2184948
[14]Pecora, L. M.; Carroll, T. L.: Master stability functions for synchronized coupled systems, Phys. rev. Lett. 80, No. 10, 2109-2112 (1998)
[15]Wu, C. W.: Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity 18, 1057-1064 (2005) · Zbl 1089.37024 · doi:10.1088/0951-7715/18/3/007
[16]Wu, C. W.; Chua, L. O.: Synchronization in an array of linearly coupled dynamical systems, IEEE trans. CAS-I 42, No. 8, 430-447 (1995) · Zbl 0867.93042 · doi:10.1109/81.404047
[17]Lu, W. L.; Chen, T. P.: New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D 213, No. 2, 214-230 (2006) · Zbl 1105.34031 · doi:10.1016/j.physd.2005.11.009
[18]Lu, W. L.; Chen, T. P.; Chen, G. R.: Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay, Physica D 221, No. 2, 118-134 (2006) · Zbl 1111.34056 · doi:10.1016/j.physd.2006.07.020
[19]Golubitsky, M.; Stewart, I.; Török, A.: Patterns of synchrony in coupled cell networks with multiple arrows, SIAM J. Appl. dyn. Syst. 4, No. 1, 78-100 (2005) · Zbl 1090.34030 · doi:10.1137/040612634
[20]Golubitsky, M.; Stewart, I.: Nonlinear dynamics of networks: the groupoid formalism, Bull. amer. Math. soc. 43, No. 3, 305-364 (2006) · Zbl 1119.37036 · doi:10.1090/S0273-0979-06-01108-6
[21]Horn, R. A.; Johnson, C. R.: Matrix analysis, (1985)
[22]Pogromsky, A.; Glad, T.; Nijmeijer, H.: On diffusion driven oscillations in coupled dynamical systems, Internat. J. Bifur. chaos 9, No. 4, 629-644 (1999) · Zbl 0970.34029 · doi:10.1142/S0218127499000444
[23]Pogromsky, A.; Nijmeijer, H.: Cooperative oscillatory behavior of mutually coupled dynamical systems, IEEE trans. CAS-I 48, No. 2, 152-162 (2001) · Zbl 0994.82065 · doi:10.1109/81.904879
[24]Ashwin, P.; Buescu, J.; Stewart, I.: From attractor to chaotic saddle: A tale of transverse instability, Nonlinearity 9, 703-737 (1996) · Zbl 0887.58034 · doi:10.1088/0951-7715/9/3/006
[25]Belykh, V. N.; Belykh, I. V.; Mosekilde, E.: Cluster synchronization modes in an ensemble of coupled chaotic oscillators, Phys. rev. E. 63, No. 3, 036216 (2001)
[26]Zou, F.; Nosse, J. A.: Biffurcation and chaos in cellular neural networks, IEEE trans. CAS-I 40, No. 3, 166-173 (1993) · Zbl 0782.92003 · doi:10.1109/81.222797
[27]Tianping Chen, Wei Wu, Continuation of solutions of coupled dynamical systems, arXiv:0708.4275v1 [math.DS]