zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bifurcation of limit cycles at the equator for a class of polynomial differential system. (English) Zbl 1167.37341
Summary: Center conditions and bifurcation of limit cycles from the equator for a class of polynomial system of degree seven are studied. The method is based on converting a real system into a complex system. The recursion formula for the computation of singular point quantities of complex system at the infinity, and the relation of singular point quantities of complex system at the infinity with the focal values of its concomitant system at the infinity are given. Using the computer algebra system Mathematica, the first 14 singular point quantities of complex system at the infinity are deduced. At the same time, the conditions for the infinity of a real system to be a center and 14 order fine focus are derived respectively. A system of degree seven that bifurcates 13 limit cycles from the infinity is constructed for the first time.
MSC:
37G15Bifurcations of limit cycles and periodic orbits
34C07Theory of limit cycles of polynomial and analytic vector fields
34C23Bifurcation (ODE)