zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on the stability of fractional order systems. (English) Zbl 1168.34036
Summary: A new approach is suggested to investigate stability in a family of fractional order linear time invariant systems with order between 1 and 2. The proposed method relies on finding a linear ordinary system that possesses the same stability property as the fractional order system. In this way, instead of performing the stability analysis on the fractional order systems, the analysis is converted into the domain of ordinary systems which is well established and well understood. As a useful consequence, we have extended two general tests for robust stability check of ordinary systems to fractional order systems.
34D20Stability of ODE
26A33Fractional derivatives and integrals (real functions)
[1]Anderson, B. D. O.; Bose, N. K.; Jury, E. I.: A simple test for zeros of a complex polynomial in a sector, IEEE trans. Automat. control 19, 437-438 (A1974) · Zbl 0282.30003 · doi:10.1109/TAC.1974.1100588
[2]Chen, Y. Q.; Ahn, H.; Podlubny, I.: Robust stability check of fractional order linear time invariant systems with interval uncertainties, Signal process. 86, 2611-2618 (2006) · Zbl 1172.94385 · doi:10.1016/j.sigpro.2006.02.011
[3]Davison, E. J.; Ramesh, N.: A note on the eigenvalues of a real matrix, IEEE trans. Automat. control 15, No. April, 252-253 (1970)
[4]Delgado-Romero, J. J. D.; Gonzalez-Garza, R. S.; Hernandez-Morales, E.; Delgado-Romero, G.: Robust stability of linear time invariant systems represented by an interval matrix, , 545-548 (1997)
[5]Hostetter, G. H.: An improved test for the zeros of a polynomial in a sector, IEEE trans. Automat. control 20, 433-434 (1975)
[6]Hwang, C.; Cheng, Y. C.: A numerical algorithm for stability testing of fractional delay systems, Automatica 42, 825-831 (2006) · Zbl 1137.93375 · doi:10.1016/j.automatica.2006.01.008
[7]B.J. Lurie, Tunable TID controller, US patent 5,371,670, December 6, 1994.
[8]Matignon, D.: Stability results for fractional differential equations with applications to control processing, , 963-968 (1996)
[9]Matignon, D.: Stability properties for generalized fractional differential systems, ESAIM: proc. 5, 145-158 (1998) · Zbl 0920.34010 · doi:10.1051/proc:1998004 · doi:http://www.edpsciences.org/articles/proc/Vol.5/contents.htm
[10]Ostalczyk, P.: Nyquist characteristics of a fractional order integrator, J. fract. Calculus 19, 67-78 (2001) · Zbl 0993.93023
[11]Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F. M.: Frequency-band complex non-integer differentiator: characterization and synthesis, IEEE trans. Circuits syst. I: fundam. Theory appl. 47, No. 1, 25-39 (2000)
[12]Oustaloup, A.; Moreau, X.; Nouillant, M.: The CRONE suspension, Control eng. Pract. 4, No. 8, 1101-1108 (1996)
[13]Petras, I.; Chen, Y. Q.; Vinagre, B. M.: Robust stability test for interval fractional order linear systems, Unsolved problems in the mathematics of systems and control, 208-210 (2004)
[14]Petras, I.; Chen, Y. Q.; Vinagre, B. M.; Podlubny, I.: Stability of linear time invariant systems with interval fractional orders and interval coefficients, , 1-4 (2005)
[15]Podlubny, I.: Fractional-order systems and PIλdμ-controllers, IEEE trans. Automat. control 44, No. 1, 208-214 (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[16]Podlubny, I.: Fractional differential equations, (1999)
[17]Qiu, Z.; Muller, P. C.; Frommer, A.: Ellipsoidal set-theoretic approach for stability of linear state-space models with interval uncertainty, Math. comput. Simul. 57, 45-59 (2001) · Zbl 0985.65077 · doi:10.1016/S0378-4754(01)00283-X
[18]Raynaud, H. F.; Zergainoh, A.: State-space representation for fractional order controllers, Automatica 36, 1017-1021 (2000) · Zbl 0964.93024 · doi:10.1016/S0005-1098(00)00011-X