zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solutions of stochastic differential delay equations with jumps. (English) Zbl 1168.60356
Summary: We investigate the strong convergence of the Euler-Maruyama method and stochastic theta method for stochastic differential delay equations with jumps. Under a global Lipschitz condition, we not only prove the strong convergence, but also obtain the rate of convergence. We show strong convergence under a local Lipschitz condition and a linear growth condition. Moreover, it is the first time that we obtain the rate of the strong convergence under a local Lipschitz condition and a linear growth condition, i.e., if the local Lipschitz constants for balls of radius R are supposed to grow not faster than logR.
60H35Computational methods for stochastic equations
60H10Stochastic ordinary differential equations
34K20Stability theory of functional-differential equations
34K50Stochastic functional-differential equations