zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Kernel dimension reduction in regression. (English) Zbl 1168.62049
Summary: We present a new methodology for sufficient dimension reduction (SDR). Our methodology derives directly from the formulation of SDR in terms of the conditional independence of the covariate X from the response Y, given the projection of X on the central subspace [cf. K.-C. Li, J. Am. Stat. Assoc. 86, No. 414, 316–342 (1991; Zbl 0742.62044); and “Regression graphics. Ideas for studying regressions through graphics.” New York: Wiley (1998; Zbl 0903.62001)]. We show that this conditional independence assertion can be characterized in terms of conditional covariance operators on reproducing kernel Hilbert spaces and we show how this characterization leads to an M-estimator for the central subspace. The resulting estimator is shown to be consistent under weak conditions; in particular, we do not have to impose linearity or ellipticity conditions of the kinds that are generally invoked for SDR methods. We also present empirical results showing that the new methodology is competitive in practice.
MSC:
62H05Characterization and structure theory (Multivariate analysis)
46N30Applications of functional analysis in probability theory and statistics
62J99Linear statistical inference
62H99Multivariate analysis
62J02General nonlinear regression
65C60Computational problems in statistics