zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A real coded genetic algorithm for solving integer and mixed integer optimization problems. (English) Zbl 1168.65353
Summary: A real coded genetic algorithm named MI-LXPM is proposed for solving integer and mixed integer constrained optimization problems. The proposed algorithm is a suitably modified and extended version of the real coded genetic algorithm, LXPM, of Deep and Thakur [K. Deep and M. Thakur, Appl. Math. Comput. 188, No. 1, 895–911 (2007; Zbl 1137.90726); Appl. Math. Comput. 193, No. 1, 211–230 (2007)]. The algorithm incorporates a special truncation procedure to handle integer restrictions on decision variables along with a parameter free penalty approach for handling constraints. The performance of the algorithm is tested on a set of twenty test problems selected from different sources in literature, and compared with the performance of an earlier application of a genetic algorithm and also with a random search based algorithm, RST2ANU, incorporating annealing concept. The proposed MI-LXPM outperforms both the algorithms in most of the cases which are considered.
MSC:
65K05Mathematical programming (numerical methods)
References:
[1]Deep, K.; Thakur, M.: A new crossover operator for real coded genetic algorithms, Applied mathematics and computation 188, 895-912 (2007) · Zbl 1137.90726 · doi:10.1016/j.amc.2006.10.047
[2]Deep, K.; Thakur, M.: A new mutation operator for real coded genetic algorithms, Applied mathematics and computation 193, 211-230 (2007) · Zbl 1193.68209 · doi:10.1016/j.amc.2007.03.046
[3]Cooper, M. W.: Survey of methods for nonlinear integer programming, Management science 27, 353-361 (1981) · Zbl 0453.90067 · doi:10.1287/mnsc.27.3.353
[4]Salkin, H. M.: Integer programming, (1975) · Zbl 0319.90038
[5]Floudas, C. A.: Nonlinear mixed-integer optimization. Fundamentals and applications, (1995) · Zbl 0886.90106
[6]Grossmann, I. E.: Review of non-linear mixed integer and disjunctive programming techniques, Optimization and engineering 3, 227-252 (2002) · Zbl 1035.90050 · doi:10.1023/A:1021039126272
[7]Marchand, H.; Martin, A.; Weismantel, R.: Cutting planes in integer and mixed integer programming, Discrete applied mathematics 123, 397-446 (2002) · Zbl 1130.90370 · doi:10.1016/S0166-218X(01)00348-1
[8]Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M.: Optimization by simulated annealing, Science 220, 671-680 (1983) · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[9]Sonilah, A.: Simulated anneling for manufacturing systems layout design, European journal of operational research 82, 592-614 (1995)
[10]Cardoso, M. F.; Salcedo, R. L.; Azevedo, S. F.; Barbosa, D.: A simulated annealing approach to the solution of minlp problems, Computers and chemical engineering 21, 1349-1364 (1997)
[11]B.V. Babu, R. Angira, A differential evolution approach for global optimization of minlp problems, in: Proceedings of Fourth Asia Pacific Conference on Simulated Evolution and Learning, Singapore, 2002, pp. 880 – 884.
[12]Yan, L.; Shen, K.; Hu, S.: Solving mixed integer nonlinear programming problems with line-up competition algorithm, Computers and chemical engineering 28, 2647-2657 (2004)
[13]Yiqing, L.; Xigang, Y.; Yongjian, L.: An improved pso algorithm for solving non-convex nlp/minlp problems with equality constraints, Computers and chemical engineering 31, 153-162 (2007)
[14]Price, W. L.: Global optimization by controlled random search, Journal of optimization: theory and applications 40, 333-348 (1983) · Zbl 0494.90063 · doi:10.1007/BF00933504
[15]Price, W. L.: Global optimization algorithms for cad workstation, Journal of optimization: theory and application 55, 133-146 (1987) · Zbl 0622.90073 · doi:10.1007/BF00939049
[16]Mohan, C.; Shanker, K.: A controlled random search technique for global optimization using quadratic approximation, Asia-Pacific journal of operation research 11, 93-101 (1994) · Zbl 0807.90104
[17]Mohan, C.; Nguyen, H. T.: A controlled random search technique incorporating the simulating annealing concept for solving integer and mixed integer global optimization problems, Computational optimization and applications 14, 103-132 (1999) · Zbl 0970.90053 · doi:10.1023/A:1008761113491
[18]Salcedo, R. L.: Solving nonconvex nonlinear programming and mixed-integer non-linear programming problems with adaptive random search, Industrial & engineering chemistry research 31, 262-273 (1992)
[19]Holland, J. H.: Adaptation in natural and artificial systems, (1975)
[20]K.A. De-Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. Thesis, University of Michigan, 1975.
[21]Goldberg, D. E.: Genetic algorithms in search, optimization and machine learning, (1989) · Zbl 0721.68056
[22]Deb, K.: Multi-objective optimization using evolutionary algorithms, (2001) · Zbl 0970.90091
[23]Cheung, B. K. S.; Langevin, A.; Delmaire, H.: Coupling genetic algorithm with a grid search method to solve mixed integer nonlinear programming problems, Computers and mathematics with applications 32, 13-23 (1997) · Zbl 0905.90126 · doi:10.1016/S0898-1221(97)00229-0
[24]Luo, Y. C.; Guignard, M.; Chen, C. H.: A hybrid approach for integer programming combining genetic algorithms, linear programming and ordinal optimization, Journal of intelligent manufacturing 12, 509-519 (2001)
[25]Costa, L.; Oliveria, P.: Evolutionary algorithms approach to the solution jof mixed integer non-linear programming problems, Computers and chemical engineering 21, 257-266 (2001)
[26]Hua, Z.; Huang, F.: An efficient genetic algorithm approach to large scale mixed integer programming problems, Applied mathematics and computation 174, 897-907 (2006) · Zbl 1090.65070 · doi:10.1016/j.amc.2005.05.017
[27]Y.-X. Li, M. Gen, Nonlinear mixed integer programming problems using genetic algorithm and penalty function, in: Proceeding of the IEEE International Conference on Systems, Man and Cybernatics, vol. 4, 1996, pp. 2677 – 2682.
[28]Yokota, T.; Gen, M.; Li, Y. X.: Genetic algorithm for nonlinear mixed integer programming problems and its applications, Computers and industrial engineering 30, 905-917 (1996)
[29]Maiti, A. K.; Bhunia, A. K.; Maiti, M.: An application of real coded genetic algorithm (rcga) for mixed integer non-linear programming in two storage multi-item inventory model with discount policy, Applied mathematics and computation 183, 903-915 (2006) · Zbl 1112.90103 · doi:10.1016/j.amc.2006.05.141
[30]Ponsich, A.; Pantel, C. A.; Domenech, S.; Pibouleau, L.: Mixed integer nonlinear programming optimization strategies for batch plant design problems, Industrial & engineering chemistry research 46, 854-863 (2007)
[31]D.E. Goldberg, K. Deb, A comparison of selection schemes used in genetic algorithms, in: Foundations of Genetic Algorithms 1, FOGA-1, vol. 1, 1991, pp. 69 – 93.
[32]Deb, K.: An efficient constraint handling method for genetic algorithms, Computer methods in applied mechanics and engineering 186, 311-338 (2000) · Zbl 1028.90533 · doi:10.1016/S0045-7825(99)00389-8
[33]Bharti, Controlled Random Search Techniques and Their Applications, Ph.D. Thesis, Department of Mathematics, University of Roorkee, India, 1994.
[34]Kocis, G. R.; Grossmann, I. E.: Global optimazation of nonconvex mixed-integer nonlinear programming (minlp) problems in process synthesis, Industrial & engineering chemistry research 27, 1407-1421 (1988)
[35]H.T. Nguyen, Some Global Optimization Techniques and Their Use in Solving Optimization Problems in Crisp and Fuzzy Environments, Ph.D. Thesis, Department of Mathematics, University of Roorkee, Roorkee, India, 1996.
[36]Yuan, X.; Zhang, S.; Pibouleau, L.; Domenech, S.: Une methode d’optimization nonlineaire en variables mixtes pour la conception de proceds, RAIRO operations research 22, 131-146 (1988)
[37]Berman, O.; Ashrafi, N.: Optimization models for reliability of modular software systems, IEEE transactions on software engineering 19, 11-19 (1993)
[38]Bazaraa, M. S.; Sherah, H. D.; Shetty, C. M.: Nonlinear programming: theory and algorithms, (2004)
[39]Himmelblau, D. M.: Applied nonlinear programing, (1972) · Zbl 0241.90051
[40]Conley, W.: Computer optimization techniques, (1984)
[41]Dhingra, A. K.: Optimal apportionment of reliability and redundancy in series systems under multiple objectives, IEEE transactions on reliability 41, 576-582 (1992) · Zbl 0775.90182 · doi:10.1109/24.249589