zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution for the KdV equation based on similarity reductions. (English) Zbl 1168.65376
Summary: The present paper is devoted to the development of a new scheme to solve the KdV equation locally on sub-domains using similarity reductions for partial differential equations. Each sub-domain is divided into three-grid points. The ordinary differential equation deduced from the similarity reduction can be linearized, integrated analytically and then used to approximate the flux vector in the KdV equation. The arbitrary constants in the analytical solution of the similarity equation can be determined in terms of the dependent variables at the grid points in each sub-domain. This approach eliminates the difficulties associated with boundary conditions for the similarity reductions over the whole solution domain. Numerical results are obtained for two test problems to show the behavior of the solution of the problems. The computed results are compared with other numerical results.
MSC:
65M06Finite difference methods (IVP of PDE)
35Q53KdV-like (Korteweg-de Vries) equations
References:
[1]Zabusky, N. J.: A synergetic approach to problem of nonlinear dispersive wave propagation and interaction, Proceedings of symposium non-linear partial differential equations, 223-258 (1967) · Zbl 0183.18104
[2]Fornberg, B.; Whitham, G. B.: A numerical and theoretical study of certain nonlinear wave phenomena, Philos. trans. Roy. soc. 289, 373-404 (1978) · Zbl 0384.65049 · doi:10.1098/rsta.1978.0064
[3]Goda, K.: On stability of some finite difference schemes for the Korteweg-de Vries equation, J. phys. Soc. jpn. 39, 229-236 (1975)
[4]Vliengenthart, A. C.: On finite difference methods for Korteweg-de Vries equation, J. eng. Math. 5, 137-155 (1971)
[5]Alexander, M. E.; Morries, J. Li.: Galerkin methods for some model equations for nonlinear dispersive waves, J. comput. Phys. 30, 428-451 (1979) · Zbl 0407.76014 · doi:10.1016/0021-9991(79)90124-4
[6]L.R.T. Gardner, A.H.A. Ali, A numerical solution for the Kortewege-de Vries equation using Galerkins method with hermite polynomial shape functions, in: Proceedings of International Conference on Modeliling and Simulation, vol. 1 C, AMSE Press, Tassin-la – demi-lune, France, Istanbul, 1988, p. 81 – 93.
[7]Gardner, L. R. T.; Gardner, G. A.; Ali, A. H. A.: Simulation of solitons using quadratic spline finite elements, Comput. meth. Appl. mechan. Eng. 92, 231-243 (1991) · Zbl 0825.76417 · doi:10.1016/0045-7825(91)90241-W
[8]Soliman, A. A.: Collocation solution of the Korteweg-de Vries equation using septic splines, Int. J. Comp. math. 81, 325-331 (2004) · Zbl 1058.65113 · doi:10.1080/00207160410001660817
[9]Soliman, A. A.: Numerical simulation and explicit solutions of KdV-Burgers and Lax’s seventh-order KdV equations, Chaos soliton fract. 29, No. 2, 294-302 (2006) · Zbl 1099.35521 · doi:10.1016/j.chaos.2005.08.054
[10]Inc, M.: Numerical simulation of KdV and mkdv equations with initial conditions by the variational iteration method, Chaos soliton fract. 34, No. 4, 1075-1081 (2007) · Zbl 1142.35572 · doi:10.1016/j.chaos.2006.04.069
[11]Dambaru, D. Bhatta; Muhammad, I. Bhatti: Numerical solution of KdV equation using modified Bernstein polynomials, Appl. math. Comput. 174, No. 2, 1255-1268 (2006) · Zbl 1090.65117 · doi:10.1016/j.amc.2005.05.049
[12]Soliman, A. A.; Abdou, M. A.: Exact travelling wave solutions of nonlinear partial differential equations, Chaos soliton fract. 32, No. 2, 808-815 (2007) · Zbl 1138.35402 · doi:10.1016/j.chaos.2005.11.053
[13]Dianchen Lu, Baojian Hong, Lixin Tian, New Solitary wave and periodic wave solutions for general types of KdV and KdV-Burgers’ equations, Communications in Nonlinear Science and Numerical Simulation , in press.
[14]Wazwaz, Abdul-Majid: New sets of solitary wave solutions to the KdV, mkdv, and the generalized KdV equations, Commun. nonlinear sci. Numer. simulat. 13, No. 2, 331-339 (2008) · Zbl 1131.35385 · doi:10.1016/j.cnsns.2006.03.013
[15]A.A. Soliman, New numerical technique for burger’s equation based on similarity reductions, international conference on applied computational fluid dynamics, Beijing, China, 2000 (October 17 – 20, p. 559 – 566).
[16]Soliman, A. A.: Numerical scheme based on similarity reductions for the regularized long wave equation, Int. J. Comput. math. 81, No. 10, 1281-1288 (2004) · Zbl 1063.65086 · doi:10.1080/00207160412331272135
[17]Soliman, A. A.; Ali, A. H. A.: Error function scheme for Burgers equation, Int. J. Comput. math. 83, No. 4, 371-381 (2006) · Zbl 1109.65077 · doi:10.1080/00207160600961265
[18]Clarkson, P. A.; Kruskal, M. D.: New similarity reductions of the Boussinesq equations, J. math. Phys. 30, 2201-2213 (1989) · Zbl 0698.35137 · doi:10.1063/1.528613
[19]Serna, J. M. Sanz; Christie, I.: Petrove Galerkin methods for nonlinear dispersive waves, J. comput. Phys. 39, 94-102 (1981) · Zbl 0451.65086 · doi:10.1016/0021-9991(81)90138-8
[20]Greig, I. S.; Morris, J. Li.: A hopscotch method for the Korteweg-de Vries equation, J. comput. Phys. 20, 64-80 (1976) · Zbl 0382.65043 · doi:10.1016/0021-9991(76)90102-9
[21]Zabusky, N. J.; Kruskal, M. D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. rev. Lett. 15, 240-243 (1965)