zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Vector-valued implicit Lagrangian for symmetric cone complementarity problems. (English) Zbl 1168.90622
Summary: The implicit Lagrangian was first proposed by Mangasarian and Solodov as a smooth merit function for the nonnegative orthant complementarity problem. It has attracted much attention in the past ten years because of its utility in reformulating complementarity problems as unconstrained minimization problems. In this paper, exploiting the Jordan-algebraic structure, we extend it to the vector-valued implicit Lagrangian for symmetric cone complementary problem (SCCP), and show that it is a continuously differentiable complementarity function for SCCP and whose Jacobian is strongly semismooth. As an application, we develop the real-valued implicit Lagrangian and the corresponding smooth merit function for SCCP, and give a necessary and sufficient condition for the stationary point of the merit function to be a solution of SCCP. Finally, we show that this merit function can provide a global error bound for SCCP with the uniform Cartesian P-property.
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)