×

A model of macroscale deformation and microvibration in skeletal muscle tissue. (English) Zbl 1168.92008

Summary: This paper deals with modeling the passive behavior of skeletal muscle tissues including certain microvibrations at the cell level. Our approach combines a continuum mechanics model with large deformations and incompressibility at the macroscale with chains of coupled nonlinear oscillators. The model verifies that an externally applied vibration at the appropriate frequency is able to synchronize microvibrations in skeletal muscle cells. From the numerical analysis point of view, one faces a partial differential-algebraic equation (PDAE) that after semi-discretization in space by finite elements possesses an index up to three, depending on certain physical parameters. In this context, the consequences for the time integration as well as possible remedies are discussed.

MSC:

92C10 Biomechanics
74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
65L05 Numerical methods for initial value problems involving ordinary differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs

Software:

COMSOL
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia, USA (1998). Zbl0908.65055 · Zbl 0908.65055
[2] K.E. Brenan, S.L. Campbell and L.R. Petzold, The Numerical Solution of Initial Value Problems in Ordinary Differential-Algebraic Equations. SIAM, Philadelphia, USA (1996). Zbl0844.34008 · Zbl 0844.34008
[3] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer (1991). Zbl0788.73002 · Zbl 0788.73002
[4] P. Brown, A. Hindmarsh and L.R. Petzold, Using Krylow methods in the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comp.15 (1994) 1467-1488. Zbl0812.65060 · Zbl 0812.65060 · doi:10.1137/0915088
[5] COMSOL Multiphysics User Manual, Version 3.4 (2007).
[6] M. Cross, J. Rogers, R. Lifshitz and A. Zumdieck, Synchronization by reactive coupling and nonlinear frequency pulling. Phys. Rev. E73 (2006) 036205.
[7] F. Dietrich, Ein Zweiskalenansatz zur Modellierung der Skelettmuskulatur. Diploma Thesis, TU München, Germany (2007).
[8] E. Gallasch and T. Kenner, Characterisation of arm microvibration recorded on an accelometer. Eur. J. Appl. Physiol. 75 (1997) 226-232.
[9] E. Gallasch and M. Moser, Effects of an eight-day space flight on microvibration and physiological tremor. Am. J. Physiol.273 (1997) R86-R92.
[10] C. Gear, G. Gupta and B. Leimkuhler, Automatic integration of the Euler-Lagrange equations with constraints. J. Comp. Appl. Math.12 (1985) 77-90. Zbl0576.65072 · Zbl 0576.65072 · doi:10.1016/0377-0427(85)90008-1
[11] A. Gielen, C. Oomens, P. Bovendeerd and T. Arts, A finite element approach for skeletal muscle using a distributed moment model of contraction. Comp. Meth. Biomech. Biomed. Engng.3 (2000) 231-244.
[12] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms. Cambridge University Press (1996). · Zbl 0837.92009
[13] G. Golub and C. van Loan, Matrix Computations. Third Edition, John Hopkins University Press, Baltimore (1996). · Zbl 0865.65009
[14] A.V. Hill, The heat of shortening and the dynamic constants of muscle. P. Roy. Soc. Lond. B Bio.126 (1938) 136-195.
[15] T.J. Hughes, The Finite Element Method. Prentice Hall, Englewood Cliffs (1987). · Zbl 0634.73056
[16] A.F. Huxley, Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem.7 (1957) 255-318.
[17] E. Kuhl, K. Garikipati, E.M. Arruda and K. Grosh, Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network. J. Mech. Physics Solids53 (2005) 1552-1573. · Zbl 1120.74635 · doi:10.1016/j.jmps.2005.03.002
[18] G.T. Line, J. Sundnes and A. Tveito, An operator splitting method for solving the Bidomain equations coupled to a volume conductor model for the torso. Math. Biosci.194 (2005) 233-248. · Zbl 1063.92018 · doi:10.1016/j.mbs.2005.01.001
[19] Ch. Lubich, Integration of stiff mechanical systems by Runge-Kutta methods. ZAMP44 (1993) 1022-1053. · Zbl 0784.70002 · doi:10.1007/BF00942763
[20] J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity. Dover Publications (1994). · Zbl 0545.73031
[21] W. Maurel, N.Y. Wu and D. Thalmann, Biomechanical models for soft tissue simulation. Springer (1998).
[22] P. Matthews, R. Mirollo and St. Strogatz, Dynamics of a large system of coupled nonlinear oscillators. Physica D52 (1991) 293-331. · Zbl 0742.34035 · doi:10.1016/0167-2789(91)90129-W
[23] U. Randoll, Matrix-Rhythm-Therapy of Dynamic Illnesses, in Extracellular Matrix and Groundregulation System in Health and Disease, H. Heine, M. Rimpler, G. Fischer Eds., Stuttgart-Jena-New York (1997) 57-70.
[24] B. Simeon, On Lagrange multipliers in flexible multibody dynamics. Comput. Methods Appl. Mech. Eng.195 (2006) 6993-7005. · Zbl 1120.74517 · doi:10.1016/j.cma.2005.04.015
[25] www-m2.ma.tum.de/twiki/bin/view/Allgemeines/ProfessorSimeon/movie12.avi.
[26] S. Thiemann, Modellierung und numerische Simulation der Skelettmuskulatur. Diploma Thesis, TU München, Germany (2006).
[27] G.I. Zahalak and I. Motabarzadeh, A re-examination of calcium activation in the Huxley cross-bridge model. J. Biomech. Engng.119 (1997) 20-29.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.