zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillatory viral dynamics in a delayed HIV pathogenesis model. (English) Zbl 1168.92031
Summary: We consider an HIV pathogenesis model incorporating antiretroviral therapy and HIV replication time. We investigate the existence and stability of equilibria, as well as Hopf bifurcations to sustained oscillations when drug efficacy is less than 100%. We derive sufficient conditions for the global asymptotic stability of the uninfected steady state. We show that the time delay has no effect on the local asymptotic stability of the uninfected steady state, but can destabilize the infected steady state, leading to a Hopf bifurcation to periodic solutions in the realistic parameter ranges.
92C50Medical applications of mathematical biology
34K20Stability theory of functional-differential equations
34K60Qualitative investigation and simulation of models
92C60Medical epidemiology
34K18Bifurcation theory of functional differential equations
[1]Bonhoeffer, S.; May, R. M.; Shaw, G. M.: Virus dynamics and drug therapy, Proc. natl. Acad. sci. USA 94, 6971 (1997)
[2]Bortz, D. M.; Nelson, P. W.: Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics, Bull. math. Biol. 66, 1009 (2004)
[3]L.M. Cai, X.Z. Li, Stability of Hopf bifurcation in a delayed model for HIV infection of CD4+ T-cells, Chaos, Solitons amp; Fractals 2008, in press.
[4]Cooke, K. L.; Den Driessche, P. Van: On zeroes of some transcendental equations, Funkcialaj ekvacioj 29, 77 (1986) · Zbl 0603.34069
[5]Culshaw, R. V.; Ruan, S. G.: A delay-differential equation model of HIV infection of CD4+ T-cells, Math. biosci. 165, 27 (2000) · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[6]Culshaw, R. V.; Ruan, S. G.; Spiteri, R. J.: Optimal HIV treatment by maximising immune response, J. math. Biol. 48, 545 (2004) · Zbl 1057.92035 · doi:10.1007/s00285-003-0245-3
[7]De Leenheer, P.; Smith, H. L.: Virus dynamics: a global analysis, SIAM J. Appl. math. 63, 1313 (2003) · Zbl 1035.34045 · doi:10.1137/S0036139902406905
[8]Dixit, N. M.; Perelson, A. S.: Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay, J. theor. Biol. 226, 95 (2004)
[9]Freedman, H. I.; Kuang, Y.: Stability switches in linear scalar neutral delay equations, Funkcialaj ekvacioj 34, 187 (1991) · Zbl 0749.34045
[10]Freedman, H. I.; Rao, V. Sree Hari: The trade-off between mutual interference and time lags in predator – prey systems, Bull. math. Biol. 45, 991 (1983) · Zbl 0535.92024
[11]Herz, A. V. M.; Bonhoeffer, S.; Anderson, R. M.: Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay, Proc. natl. Acad. sci. USA 93, 7247 (1996)
[12]Ho, D. D.; Neumann, A. U.; Perelson, A. S.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature 373, 123 (1995)
[13]Huang, Y. X.; Rosenkranz, S. L.; Wu, H. L.: Modeling HIV dynamics and antiviral response with consideration of time-varying drug exposures, adherence and phenotypic sensitivity, Math. biol. 184, 165 (2003) · Zbl 1030.92016 · doi:10.1016/S0025-5564(03)00058-0
[14]Jiang, X. W.; Zhou, X. Y.; Shi, X. Y.; Song, X. Y.: Analysis of stability and Hopf bifurcation for a delay-differential equation model of HIV infection of CD4+ T-cells, Chaos, solitons & fractals 38, 447 (2008)
[15]Kirschner, D.; Webb, G. F.: A model for treatment strategy in the chemotherapy of AIDS, Bull. math. Biol. 58, 367 (1996) · Zbl 0853.92009 · doi:10.1007/BF02458312
[16]Lasalle, J. P.: The stability of dynamical systems, (1976)
[17]Mittler, J. E.; Sulzer, B.; Neumann, A. U.; Perelson, A. S.: Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Math. biosci. 152, 143 (1998) · Zbl 0946.92011 · doi:10.1016/S0025-5564(98)10027-5
[18]Nelson, P. W.; Murray, J. D.; Perelson, A. S.: A model of HIV-1 pathogenesis that includes an intracellular delay, Math. biosci. 163, 201 (2000) · Zbl 0942.92017 · doi:10.1016/S0025-5564(99)00055-3
[19]Nelson, P. W.; Perelson, A. S.: Mathematical analysis of delay differential equation models of HIV-1 infection, Math. biosci. 179, 73 (2002) · Zbl 0992.92035 · doi:10.1016/S0025-5564(02)00099-8
[20]Nowak, M. A.; Bonhoeffer, S.; Shaw, G. M.; May, R. M.: Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations, J. theor. Biol. 184, 203 (1997)
[21]Nowak, M. A.; May, R. M.: Virus dynamics: mathematical principles of immunology and virology, (2000)
[22]Perelson, A. S.; Kirschner, D. E.; De Boer, R.: Dynamics of HIV infection of CD4+ T cells, Math. biosci. 114, 81 (1993) · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-A
[23]Perelson, A. S.; Nelson, P. W.: Mathematical analysis of HIV-1 dynamics in vivo, SIAM rev. 41, 3 (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[24]Perelson, A. S.; Neumann, A. U.; Markowitz, M.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science 271, 1582 (1996)
[25]Sachsenberg, N.; Perelson, A. S.; Yerly, S.: Turnover of CD4+ and CD8+ T lymphocytes in HIV-1 infection as measured by ki-67 antigen, J. exp. Med. 187, 1295 (1998)
[26]Stafford, M. A.; Coreya, L.; Cao, Y. Z.: Modeling plasma virus concentration during primary HIV infection, J. theor. Biol. 203, 285 (2000)
[27]Taylor, C. E.; Sokal, R. R.: Oscillations in housefly population sizes due to time lags, Ecology 57, 1060 (1976)
[28]Wang, L.; Ellermeyer, S.: HIV infection and CD4+ T cell dynamics, Discrete contin. Dyn. syst. B 6, 1417 (2006) · Zbl 1123.92033 · doi:10.3934/dcdsb.2006.6.1381
[29]Wang, L.; Li, M. Y.: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Math. biosci. 200, 44 (2006) · Zbl 1086.92035 · doi:10.1016/j.mbs.2005.12.026
[30]Wu, H. L.; Huang, Y. X.; Acosta, E. P.: Modeling long-term HIV dynamics and antiretroviral response, J. acquir. Immune defic. Syndr. 39, 272 (2005)