zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Characterization of domains of self-adjoint ordinary differential operators. (English) Zbl 1169.47033
The authors give a characterization of domains for selfadjoint ordinary differential operators. They give a representation in terms of certain solutions for real λ. This leads to a classification of solutions as limit-point or limit-circle in analogy with the Weyl classification in the second-order case.

MSC:
47E05Ordinary differential operators
34B20Weyl theory and its generalizations
34B24Sturm-Liouville theory
47B25Symmetric and selfadjoint operators (unbounded)
References:
[1]Cao, Z. J.: On self-adjoint domains of second order differential operators in limit-circle case, Acta math. Sinica (N.S.) 1, No. 3, 175-180 (1985) · Zbl 0609.34036 · doi:10.1007/BF02564818
[2]Cao, Z. J.: On self-adjoint extensions in the limit-circle case of differential operators of order n, Acta math. Sinica 28, No. 2, 205-217 (1985)
[3]Cao, Z. J.; Sun, J.: Self-adjoint operators generated by symmetric quasi-differential expressions, Acta sci. Natur. univ. Neimongol 17, No. 1, 7-15 (1986)
[4]Cao, Z. J.: Ordinary differential operators, (1987)
[5]Coddington, E. A.; Levinson, N.: Theory of ordinary differential equations, (1955) · Zbl 0064.33002
[6]Dunford, N.; Schwartz, J. T.: Linear operators, vol. II, (1963)
[7]Everitt, W. N.; Neuman, F.: A concept of adjointness and symmetry of differential expressions based on the generalized Lagrange identity and Green’s formula, Lecture notes in math. 1032, 161-169 (1983) · Zbl 0531.34002
[8]Evans, W. D.; Sobhy, E. I.: Boundary conditions for general ordinary differential operators and their adjoints, Proc. roy. Soc. Edinburgh sect. A 114, 99-117 (1990) · Zbl 0704.34034 · doi:10.1017/S030821050002429X
[9]Everitt, W. N.; Zettl, A.: Generalized symmetric ordinary differential expressions, I: The general theory, Nieuw arch. Wiskd. (3) 27, 363-397 (1979) · Zbl 0451.34009
[10]Everitt, W. N.: A note on the self-adjoint domains of 2nth-order differential equations, Q. J. Math. (Oxford) 14, No. 2, 41-45 (1963) · Zbl 0115.30003 · doi:10.1093/qmath/14.1.41
[11]Everitt, W. N.: Integrable-square solutions of ordinary differential equations (III), Q. J. Math. (Oxford) 14, No. 2, 170-180 (1963) · Zbl 0123.05001 · doi:10.1093/qmath/14.1.170
[12]Everitt, W. N.: Singular differential equations, I: The even case, Math. ann. 156, 9-24 (1964) · Zbl 0145.10902 · doi:10.1007/BF01359977
[13]Everitt, W. N.: Singular differential equations, II: Some self-adjoint even case, Q. J. Math. (Oxford) 18, No. 2, 13-32 (1967) · Zbl 0153.40402 · doi:10.1093/qmath/18.1.13
[14]Everitt, W. N.; Kumar, V. K.: On the titchmarsh – Weyl theory of ordinary symmetric differential expressions, I: The general theory, Nieuw arch. Wiskd. 34, No. 3, 1-48 (1976) · Zbl 0339.34019
[15]Everitt, W. N.; Kumar, V. K.: On the titchmarsh – Weyl theory of ordinary symmetric differential expressions, II: The odd order case, Nieuw arch. Wiskd. 34, No. 3, 109-145 (1976) · Zbl 0338.34012
[16]Everitt, W. N.; Markus, L.: Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, Math. surveys monogr. 61 (1999) · Zbl 0909.34001
[17]Everitt, W. N.; Markus, L.: Complex symplectic geometry with applications to ordinary differential operators, Trans. amer. Math. soc. 351, No. 12, 4905-4945 (1999) · Zbl 0936.34005 · doi:10.1090/S0002-9947-99-02418-6
[18]Frentzen, H.: Equivalence, adjoints and symmetry of quasi-differential expressions with matrix-valued coefficients and polynomials in them, Proc. roy. Soc. Edinburgh sect. A 92, 123-146 (1982) · Zbl 0506.34020 · doi:10.1017/S0308210500019995
[19]Fu, S. Z.: On the self-adjoint extensions of symmetric ordinary differential operators in direct sum spaces, J. differential equations 100, No. 2, 269-291 (1992) · Zbl 0768.34052 · doi:10.1016/0022-0396(92)90115-4
[20]Kauffman, R. M.; Read, T. T.; Zettl, A.: The deficiency index problem for powers of ordinary differential expressions, Lecture notes in math. 621 (1977) · Zbl 0367.34014
[21]Li, W. M.: The high order differential operators in direct sum spaces, J. differential equations 84, No. 2, 273-289 (1990) · Zbl 0726.47033 · doi:10.1016/0022-0396(90)90079-5
[22]Möller, M.: On the unboundedness below of the Sturm – Liouville operator, Proc. roy. Soc. Edinburgh sect. A 129, 1011-1015 (1999)
[23]Möller, M.; Zettl, A.: Weighted norm-inequalities for quasi-derivatives, Results math. 24, 153-160 (1993)
[24]Möller, M.; Zettl, A.: Symmetric differential operators and their Friedrichs extension, J. differential equations 115, 50-69 (1995) · Zbl 0817.34048 · doi:10.1006/jdeq.1995.1003
[25]Möller, M.; Zettl, A.: Semi-boundedness of ordinary differential operators, J. differential equations 115, 24-49 (1995) · Zbl 0817.34047 · doi:10.1006/jdeq.1995.1002
[26]Naimark, M. A.: Linear differential operators, (1968) · Zbl 0227.34020
[27]Niessen, H. -D.; Zettl, A.: The Friedrichs extension of regular ordinary differential operators, Proc. roy. Soc. Edinburgh sect. A 114, 229-236 (1990) · Zbl 0712.34020 · doi:10.1017/S0308210500024409
[28]Orlov, S. A.: On the deficiency indices of differential operators, Dokl. akad. Nauk SSSR 92, 483-486 (1953)
[29]Shang, Z. J.: On J-selfadjoint extensions of J-symmetric ordinary differential operators, J. differential equations 73, 153-177 (1988) · Zbl 0664.34037 · doi:10.1016/0022-0396(88)90123-4
[30]Shin, D.: On the solutions in L2(0,) of the self-adjoint differential equation u(n)=lu,I(l)=0, Dokl. akad. Nauk SSSR 18, 519-522 (1938)
[31]Shin, D.: On quasi-differential operators in Hilbert space, Dokl. akad. Nauk SSSR 18, 523-526 (1938) · Zbl 0019.21404
[32]Shin, D.: On the solutions of linear quasi-differential equations of the nth order, Mat. sb. 7, No. 49, 479-532 (1940)
[33]Shin, D.: On quasi-differential operators in Hilbert space, Mat. sb. 13, No. 55, 39-70 (1943) · Zbl 0061.26108
[34]Sun, J.: On the self-adjoint extensions of symmetric ordinary differential operators with middle deficiency indices, Acta math. Sinica (N.S.) 2, No. 2, 152-167 (1986) · Zbl 0615.34015 · doi:10.1007/BF02564877
[35]Titchmarsh, E. C.: Eigenfunction expansions associated with second-order differential equations, part I, (1962) · Zbl 0099.05201
[36]A.P. Wang, J. Sun, The self-adjoint extensions of singular differential operators with a real regularity point, preprint
[37]Wang, W. Y.; Sun, J.: Complex J-symplectic geometry characterization for J-symmetric extensions of J-symmetric differential operators, Adv. math. 32, No. 4, 481-484 (2003)
[38]Weidmann, J.: Linear operators in Hilbert spaces, Grad texts in math. (1980)
[39]Weidmann, J.: Spectral theory of ordinary differential operators, Lecture notes in math. 1258 (1987) · Zbl 0647.47052
[40]Windau, W.: On linear differential equations of the fourth order with singularities, and the related representations of arbitrary functions, Math. ann. 83, 256-279 (1921)
[41]Zettl, A.: Adjoint linear differential operators, Proc. amer. Math. soc. 16, 1239-1241 (1965) · Zbl 0139.03801 · doi:10.2307/2035906
[42]Zettl, A.: Formally self-adjoint quasi-differential operators, Rocky mountain J. Math. 5, 453-474 (1975) · Zbl 0443.34019 · doi:10.1216/RMJ-1975-5-3-453
[43]Zettl, A.: Sturm – Liouville theory, Math. surveys monogr. 121 (2005)