zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A damped Gauss-Newton method for the second-order cone complementarity problem. (English) Zbl 1169.49031
Summary: We investigate some properties related to the generalized Newton method for the Fischer-Burmeister (FB) function over second-order cones, which allows us to reformulate the second-order cone complementarity problem as a semismooth system of equations. Specifically, we characterize the B-subdifferential of the FB function at a general point and study the condition for every element of the B-subdifferential at a solution being nonsingular. In addition, for the induced FB merit function, we establish its coerciveness and provide a weaker condition than J.-S. Chen and P. Tseng [Math. Program. 104, No. 2–3 (B), 293–327 (2005; Zbl 1093.90063)] for each stationary point to be a solution, under suitable Cartesian P-properties of the involved mapping. By this, a damped Gauss-Newton method is proposed, and global and superlinear convergence results are obtained. Numerical results are reported for the second-order cone programs from the DIMACS library, which verify the good theoretical properties of the method.
MSC:
49M15Newton-type methods in calculus of variations
49J52Nonsmooth analysis (other weak concepts of optimality)
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
Software:
SeDuMi
References:
[1]Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003) · Zbl 1153.90522 · doi:10.1007/s10107-002-0339-5
[2]Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Program. 95, 249–277 (2003) · Zbl 1030.90137 · doi:10.1007/s10107-002-0349-3
[3]Chen, J.-S., Chen, X., Tseng, P.: Analysis of nonsmooth vector-valued functions associated with second-order cones. Math. Program. 101, 95–117 (2004) · Zbl 1065.49013 · doi:10.1007/s10107-004-0538-3
[4]Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983). Reprinted by SIAM, Philadelphia (1990)
[5]Chen, X., Qi, H.: Cartesian P-property and its applications to the semidefinite linear complementarity problem. Math. Program. 106, 177–201 (2006) · Zbl 1134.90508 · doi:10.1007/s10107-005-0601-8
[6]Chen, J.-S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104, 293–327 (2005) · Zbl 1093.90063 · doi:10.1007/s10107-005-0617-0
[7]Chen, X.-D., Sun, D., Sun, J.: Complementarity functions and numerical experiments for second-order cone complementarity problems. Comput. Optim. Appl. 25, 39–56 (2003) · Zbl 1038.90084 · doi:10.1023/A:1022996819381
[8]Fischer, A.: Solution of the monotone complementarity problem with locally Lipschitzian functions. Math. Program. 76, 513–532 (1997)
[9]Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs, Oxford University Press, New York (1994)
[10]Facchinei, F., Kanzow, C.: A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math. Program. 76, 493–512 (1997)
[11]Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order cone complementarity problems. SIAM J. Optim. 12, 436–460 (2002) · Zbl 0995.90094 · doi:10.1137/S1052623400380365
[12]Facchinei, F., Soares, J.: A new merit function for nonlinear complementarity problem and a related algorithm. SIAM J. Optim. 7, 225–247 (1997) · Zbl 0873.90096 · doi:10.1137/S1052623494279110
[13]Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593–615 (2005) · Zbl 1114.90139 · doi:10.1137/S1052623403421516
[14]Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Application of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998) · Zbl 0946.90050 · doi:10.1016/S0024-3795(98)10032-0
[15]Mifflin, M.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 957–972 (1977) · Zbl 0376.90081 · doi:10.1137/0315061
[16]Monteiro, R.D.C., Tsuchiya, T.: Polynomial convergence of primal-dual algorithms for the second-order cone programs based on the MZ-family of directions. Math. Program. 88, 61–83 (2000) · doi:10.1007/PL00011378
[17]Pan, S.-H., Chen, J.-S.: A regularization method for the second-order cone complementarity problems with Cartesian P 0-property, Nonlinear Analysis (to appear)
[18]Pataki, G., Schmieta, S.: The DIMACS library of semidefinite-quadratic-linear programs. Preliminary draft, Computational Optimization Research Center, Columbia University, New York. http://dimacs.rutgers.edu/Challenges/Seventh/Instances/
[19]Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993) · Zbl 0776.65037 · doi:10.1287/moor.18.1.227
[20]Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993) · Zbl 0780.90090 · doi:10.1007/BF01581275
[21]Sun, D., Sun, J.: Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions. Math. Program. 103, 575–581 (2005) · Zbl 1099.90062 · doi:10.1007/s10107-005-0577-4
[22]Sun, D., Womersley, R.S.: A new unconstrained differential merit function for box constrained variational inequality problems and a damped Gauss-Newton method. SIAM J. Optim. 9, 388–413 (1999) · Zbl 0960.90086 · doi:10.1137/S1052623496314173
[23]Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Software 11&12, 625–653 (1999) · Zbl 0973.90526 · doi:10.1080/10556789908805766
[24]Tsuchiya, T.: A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming. Optim. Methods Softw. 11, 141–182 (1999) · Zbl 0957.90129 · doi:10.1080/10556789908805750
[25]Zhang, H.-C., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14, 1043–1056 (2004) · Zbl 1073.90024 · doi:10.1137/S1052623403428208
[26]Yoshise, A.: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. SIAM J. Optim. 17, 1129–1153 (2006) · Zbl 1136.90039 · doi:10.1137/04061427X