zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Algorithm for solving a new class of generalized nonlinear implicit quasi-variational inclusions in Banach spaces. (English) Zbl 1169.65066
A new class of generalized nonlinear implicit quasi-variational inclusions with general H-monotone operator in Banach spaces is introduced and analyzed. An iterative algorithm based on the proximal mapping and Nadler’s theorem for solving this problem is suggested and studied. An existence result for the solution of the problem and the convergence of the iterative sequences are proved.
MSC:
65K10Optimization techniques (numerical methods)
49J40Variational methods including variational inequalities
49J27Optimal control problems in abstract spaces (existence)
References:
[1]Harker, P. T.; Pang, J. S.: Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Math. program. Ser. B 48, 161-221 (1990) · Zbl 0734.90098 · doi:10.1007/BF01582255
[2]Giannessi, F.; Maugeri, A.: Variational analysis and applications, (2005)
[3]Noor, M. A.; Rassias, T. M.: Resolvent equations for set-valued mixed variational inequalities, Nonlinear anal. 42, 71-83 (2000) · Zbl 1033.49017 · doi:10.1016/S0362-546X(98)00332-0
[4]Noor, M. A.: Multivalued quasi variational inclusions and implicit resolvent equations, Nonlinear anal. 48, 159-174 (2002) · Zbl 1047.49010 · doi:10.1016/S0362-546X(00)00177-2
[5]Noor, M. A.: Iterative methods for generalized mixed quasivariational inequalities, J. optim. Theory appl. 119, No. 1, 123-136 (2003) · Zbl 1045.49010 · doi:10.1023/B:JOTA.0000005044.11591.bd
[6]Ahmad, R.; Ansari, Q. H.: An iterative algorithm for generalized nonlinear variational inclusions, Appl. math. Lett. 13, 23-26 (2000) · Zbl 0954.49006 · doi:10.1016/S0893-9659(00)00028-8
[7]Rockafellar, R. T.: On the maximality of sums of nonlinear monotone operators, Trans. am. Math. soc. 149, No. 1, 75-88 (1970) · Zbl 0222.47017 · doi:10.2307/1995660
[8]Browder, F. E.: Nonlinear variational inequalities and maximal monotone mappings in Banach spaces, Math. ann. 183, 213-231 (1969) · Zbl 0208.39105 · doi:10.1007/BF01351381
[9]Zeidler, E.: Nonlinear functional and its applications, II/B, (1990)
[10]Ding, X. P.; Xia, F. Q.: A new class of completely generalized quasi-variational inclusions in Banach spaces, J. comput. Appl. math. 147, 369-383 (2002) · Zbl 1009.49011 · doi:10.1016/S0377-0427(02)00443-0
[11]Browder, F. E.: Existence and approximation of solutions of nonlinear variational inequalities, Proc. natl. Acad. sci. USA 56, 1080-1086 (1966) · Zbl 0148.13502 · doi:10.1073/pnas.56.4.1080
[12]Browder, F. E.: Nonlinear monotone operators and convex sets in Banach spaces, Bull. am. Math. soc. 71, 780-785 (1965) · Zbl 0138.39902 · doi:10.1090/S0002-9904-1965-11391-X
[13]F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, in: Proc. Sympos. Pure Math., vol. 18, Part 2 (the entire issue), Amer. Math. Soc., Providence, RI, 1976 (preprint version 1968).
[14]Hess, P.: On nonlinear equations of Hammerstein type in Banach spaces, Proc. am. Math. soc. 30, No. 2, 308-312 (1971) · Zbl 0229.47041 · doi:10.2307/2038272
[15]Fang, Y. P.; Huang, N. J.: H-monotone operator and resolvent operator technique for variational inclusions, Appl. math. Comput. 145, 795-803 (2003) · Zbl 1030.49008 · doi:10.1016/S0096-3003(03)00275-3
[16]Fang, Y. P.; Huang, N. J.: H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. math. Lett. 17, 647-653 (2004) · Zbl 1056.49012 · doi:10.1016/S0893-9659(04)90099-7
[17]Noor, M. A.; Noor, K. I.; Al-Khaled, K.: Predictor – corrector methods for general mixed quasi variational inequalities, Appl. math. Comput. 157, 643-652 (2004) · Zbl 1069.65071 · doi:10.1016/j.amc.2003.08.060
[18]Xia, F. Q.; Huang, N. J.: Variational inclusions with a general H-monotone operator in Banach spaces, Comput. math. Appl. 54, 24-30 (2007) · Zbl 1131.49011 · doi:10.1016/j.camwa.2006.10.028
[19]Xia, F. Q.; Huang, N. J.: Algorithm for solving a new class of general mixed variational inequalities in Banach spaces, J. comput. Appl. math. 220, 632-642 (2008) · Zbl 1157.65043 · doi:10.1016/j.cam.2007.09.011
[20]Nadler, S. B.: Multivalued contraction mapping, Pacific J. Math. 30, No. 3, 457-488 (1969)
[21]Petryshyn, W. V.: A characterization of strictly convexity of Banach spaces and other uses of duality mappings, J. funct. Anal. 6, 282-291 (1970) · Zbl 0199.44004 · doi:10.1016/0022-1236(70)90061-3