zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Jacobi spectral Galerkin method for elliptic Neumann problems. (English) Zbl 1169.65111
This is the third paper devoted by the first two authors to the spectral Jacobi-Galerkin method. This time they apply the method to the Neumann problems for 1D and 2D elliptic equations. Their main point is to construct test and trial basis functions which produce sparse discretization matrices. Four numerical examples are carried out in order to underline the efficiency of the method.
MSC:
65N35Spectral, collocation and related methods (BVP of PDE)
65N22Solution of discretized equations (BVP of PDE)
65L10Boundary value problems for ODE (numerical methods)
References:
[1]Auteri, F., Quartapelle, L.: Galerkin spectral method for the vorticity and stream function equations. J. Comput. Phys. 149, 306–332 (1999) · Zbl 0934.76065 · doi:10.1006/jcph.1998.6155
[2]Auteri, F., Parolini, N., Quartapelle, L.: Essential imposition of Neumann Galerkin-Legendre elliptic solvers. J. Comput. Phys. 185, 427–444 (2003) · Zbl 1017.65093 · doi:10.1016/S0021-9991(02)00064-5
[3]Bernardi, C., Maday, Y.: Approximations Spectrales Des Probl’Emes Aux Limites Elliptiques. Springer-Verlag, Paris (1992)
[4]Bialecki, B., Karageorghis, A.: Legendre Gauss spectral collocation for the Helmholtz equation on a rectangle. Numer. Algorithms 36, 203–227 (2004) · Zbl 1075.65139 · doi:10.1023/B:NUMA.0000040056.52424.49
[5]Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970) · Zbl 0217.52902 · doi:10.1137/0707049
[6]Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Mechanics. Springer-Verlag, New York (1988)
[7]Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic, New York (1975)
[8]Doha, E.H.: On the coefficients of differentiated expansions and derivatives of Jacobi polynomials. J. Phys. A 35, 3467–3478 (2002) · Zbl 0997.33004 · doi:10.1088/0305-4470/35/15/308
[9]Doha, E.H.: On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials. J. Phys. A 37, 657–675 (2004) · Zbl 1055.33007 · doi:10.1088/0305-4470/37/3/010
[10]Doha, E.H., Abd-Elhameed, W.M.: Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials. SIAM J. Sci. Comput. 24, 548–571 (2002) · Zbl 1020.65088 · doi:10.1137/S1064827500378933
[11]Doha, E.H., Abd-Elhameed, W.M.: Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method. J. Comput. Appl. Math. 181, 24–45 (2005) · Zbl 1071.65136 · doi:10.1016/j.cam.2004.11.015
[12]Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials. Numer. Algorithms 42, 137–164 (2006) · Zbl 1103.65119 · doi:10.1007/s11075-006-9034-6
[13]Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution of the integrated forms for second-order equations using ultraspherical polynomials. ANZIAM J. 48, 361–386 (2007) · Zbl 1138.65104 · doi:10.1017/S1446181100003540
[14]Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials. Appl. Numer. Math. 58, 1224–1244 (2008) · Zbl 1152.65112 · doi:10.1016/j.apnum.2007.07.001
[15]Doha, E.H., Bhrawy, A.H.: A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations. Numer. Methods Partial Differ. Equ. (2008, in press)
[16]Fernandino, M., Dorao, C.A., Jakobsen, H.A.: Jacobi Galerkin spectral method for cylindrical and spherical geometries. Chem. Eng. Sci. 62, 6777–6783 (2007) · doi:10.1016/j.ces.2007.07.062
[17]Graham, A.: Kronecker Products and Matrix Calculus: with Applications. Ellis Horwood, Chichester (1981)
[18]Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1985)
[19]Guo, B.-Y., Wang, L.-I.: Jacobi interpolation approximations and their applications to singular differential equations. Adv. Comput. Math. 14, 227–276 (2001) · Zbl 0984.41004 · doi:10.1023/A:1016681018268
[20]Guo, B.-Y.: Jacobi spectral method for differential equations with rough asymptotic behaviors at infinity. Comput. Math. Appl. 46, 95–104 (2003) · Zbl 1055.65096 · doi:10.1016/S0898-1221(03)90083-6
[21]Heinrichs, W.: Improved condition number of spectral methods. Math. Comput. 53, 103–119 (1989) · doi:10.1090/S0025-5718-1989-0972370-0
[22]Luke, Y.: The Special Functions and their Approximations. Academic, New York (1969)
[23]Ralston, A.: A First Course in Numerical Analysis. McGraw-Hill, New York (1965)
[24]Shen, J.: Efficient spectral-Galerkin method I: direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994) · Zbl 0811.65097 · doi:10.1137/0915089
[25]Shen, J.: Efficient spectral-Galerkin method II: direct solvers of second- and fourth-order equations using Chebyshev polynomials. SIAM J. Sci. Comput. 16, 74–87 (1995) · Zbl 0840.65113 · doi:10.1137/0916006
[26]Szegö, G.: Orthogonal Polynomials. Am. Math. Soc. Colloq. Pub. 23, (1985)
[27]Voigt, R.G., Gottlieb, D., Hussaini, M.Y.: Spectral Methods for Partial Differential Equations. SIAM, Philadelphia (1984)
[28]Watson, G.N.: A note on generalized hypergeometric series. Proc. Lond. Math. Soc. 23(2), xiii–xv (1925) (Records for 8 Nov. 1923)