zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A wavelet operational method for solving fractional partial differential equations numerically. (English) Zbl 1169.65127

Summary: Fractional calculus is an extension of derivatives and integrals to non-integer orders, and a partial differential equation involving the fractional calculus operators is called the fractional PDE. They have many applications in science and engineering. However not only the analytical solution existed for a limited number of cases, but also the numerical methods are very complicated and difficult.

In this paper, we newly establish the simulation method based on the operational matrices of the orthogonal functions. We formulate the operational matrix of integration in a unified framework. By using the operational matrix of integration, we propose a new numerical method for linear fractional partial differential equation solving. In the method, we (1) use the Haar wavelet; (2) establish a Lyapunov-type matrix equation; and (3) obtain the algebraic equations suitable for computer programming. Two examples are given to demonstrate the simplicity, clarity and powerfulness of the new method.

MSC:
65R20Integral equations (numerical methods)
26A33Fractional derivatives and integrals (real functions)
45K05Integro-partial differential equations
65T60Wavelets (numerical methods)
References:
[1]Podlubny, I.: Fractional differential equations, (1999)
[2]Meerschaert, M. M.; Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations, Applied numerical mathematics 56, 80-90 (2006) · Zbl 1086.65087 · doi:10.1016/j.apnum.2005.02.008
[3]Jumarie, G.: Modified Riemann – Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Computers and mathematics with applications 51, 1367-1376 (2006) · Zbl 1137.65001 · doi:10.1016/j.camwa.2006.02.001
[4]Jumarie, G.: Fractional partial differential equations and modified Riemann – Liouville derivative new methods for solution, Journal of applied mathematics and computing 24, 31-48 (2007) · Zbl 1145.26302 · doi:10.1007/BF02832299
[5]Baeumera, B.; Kov’acsa, M.; Meerschaertb, M. M.: Numerical solutions for fractional reaction – diffusion equations, Computers and mathematics with applications 55, 2212-2226 (2008) · Zbl 1142.65422 · doi:10.1016/j.camwa.2007.11.012
[6]I.B. Petris, M. Vinagre, L. Dorcak, V. Fwliu, Fractional digital control of a heat solid: Experimental results, in: The Proceedings of International Carpathian Control Conference, Malenovice, Czech Republic, 2002, pp. 365 – 370.
[7]Chen, C. F.; Hsiao, C. H.: Design of piecewise constant gains for optimal control via Walsh functions, IEEE transactions on automatic control 20, 596-603 (1975) · Zbl 0317.49042 · doi:10.1109/TAC.1975.1101057
[8]Chen, C. F.; Tsay, Y. T.; Wu, T. T.: Walsh operational matrices for fractional calculus and their application to distributed parameter systems, Journal of franklin institute 503, 267-284 (1977) · Zbl 0377.42004 · doi:10.1016/0016-0032(77)90029-1
[9]Shih, D. S.; Kung, F. C.; Chao, C. M.: Laguerre series approach to the analysis of a linear control system incorporation observers, International journal of control 43, 123-128 (1986) · Zbl 0584.93029 · doi:10.1080/00207178608933452
[10]Ckang, R. Y.; Wang, M. L.: Legendre polynomials approximation to dynamic linear state equations with initial or boundary value condition, International journal of control 40, 215-232 (1984) · Zbl 0539.93028 · doi:10.1080/00207178408933269
[11]Paraskevopoulos, P. N.: Chebyshev series approach to system identification analysis and optimal control, Journal of franklin institute 316, 135-157 (1983) · Zbl 0538.93013 · doi:10.1016/0016-0032(83)90082-0
[12]Mouroutsos, S. G.; Sparis, P. D.: Taylor series approach to system identification analysis and optimal control, Journal of franklin institute 319, 359-371 (1985) · Zbl 0561.93018 · doi:10.1016/0016-0032(85)90056-0
[13]Paraskevopoulos, P. N.; Sparis, P. D.; Mouroutsos, S. G.: The Fourier series operational matrix of integration, International journal of system science 16, 171-176 (1985) · Zbl 0558.44004 · doi:10.1080/00207728508926663
[14]Chen, C. F.; Hsiao, C. H.: Haar wavelet method for solving lumped and distributed parameter systems, IEE Proceedings – control theory and applications 144, 87-94 (1997) · Zbl 0880.93014 · doi:10.1049/ip-cta:19970702
[15]Wu, J. L.; Chen, C. H.; Chen, C. F.: Numerical inversion of Laplace transform using Haar wavelet operational matrices, IEEE transactions on circuits and systems-part I: Fundamental theory and applications 48, 120-122 (2001)
[16]Akansu, A. N.; Haddad, R. A.: Multiresolution signal decomposition: transform, subbands and wavelets, (1981)
[17]Vetterli, M.; Kovacevic, J.: Wavelets and subband coding, (1995) · Zbl 0885.94002
[18]Bartels, R. H.; Stewart, G. W.: Solution of the matrix equation AX+XB=C, Communications of the ACM 15, 669-713 (1972)
[19]Teukolsky, S. A.; Vettering, W. T.; Flannery, B. P.: Numerical recipes in C, the art of scientific computing, (1992) · Zbl 0778.65002
[20]Jumarie, G.: Fourier’s transform of fractional order via Mittag – Leffler function and modified Riemann – Liouville derivative, Journal of applied mathematics and informatics 26, 1101-1121 (2008)