zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Joint state and parameter estimation for distributed mechanical systems. (English) Zbl 1169.74439
Summary: We present a novel strategy to perform estimation for a dynamical mechanical system in standard operating conditions, namely, without ad hoc experimental testing. We adopt a sequential approach, and the joint state-parameter estimation procedure is based on a state estimator inspired from collocated feedback control. This type of state estimator is chosen due to its particular effectiveness and robustness, but the methodology proposed to adequately extend state estimation to joint state-parameter estimation is general, and - indeed - applicable with any other choice of state feedback observer. The convergence of the resulting joint estimator is mathematically established. In addition, we demonstrate its effectiveness with a biomechanical test problem defined to feature the same essential characteristics as a heart model, in which we identify localized contractility and stiffness parameters using measurements of a type that is available in medical imaging.
74H99Dynamical problems in solid mechanics
74L15Biomechanical solid mechanics
[1]AHA/ACC/SNM, Standardization of cardiac tomographic imaging, Circulation 86 (1992) 338 – 339.
[2]Alabau, F.; Komornik, V.: Boundary observability, controllability, and stabilization of linear elastodynamic systems, SIAM J. Control optim. 37, No. 2, 521-542 (1999) · Zbl 0935.93037 · doi:10.1137/S0363012996313835
[3]Anderson, B. D. O.; Moore, J. B.: Optimal filtering, (1979) · Zbl 0688.93058
[4]K.F. Augenstein, B.R. Cowan, I.J. LeGrice, A.A. Young, Estimation of cardiac hyperelastic material properties from MRI tissue tagging and diffusion tensor imaging, in: MICCAI, 2006, pp. 628 – 635.
[5]Banks, H. T.; Fabiano, R. H.: Approximation issues for applications in optimal control and parameter estimation, Numer. math. Sci. comput., 141-165 (1998) · Zbl 0926.65066
[6]Bardos, C.; Lebeau, G.; Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control optim. 30, No. 5, 1024-1065 (1992) · Zbl 0786.93009 · doi:10.1137/0330055
[7]Bathe, K. J.: Finite element procedures, (1996)
[8]A. Bensoussan, Filtrage optimal des systèmes linéaires, Dunod, 1971. · Zbl 0231.93022
[9]Bui, H. D.: Inverse problems in the mechanics of materials: an introduction, (1994)
[10]Collet, M.; Walter, V.; Delobelle, P.: Active damping of a micro-cantilever piezo-composite beam, J. sound vibration 260, No. 3, 453-476 (2003)
[11]Corigliano, A.; Mariani, S.: Parameter identification in explicit structural dynamics: performance of the extended Kalman filter, Comput. methods appl. Mech. engrg. 193, 3807-3835 (2004) · Zbl 1068.74029 · doi:10.1016/j.cma.2004.02.003
[12]Cox, S.; Zuazua, E.: The rate at which energy decays in a damped string, Comm. partial differential equations 19, No. 1 – 2, 213-243 (1994) · Zbl 0818.35072 · doi:10.1080/03605309408821015
[13]Curtain, R. F.; Zwart, H.: An introduction to infinite-dimensional linear systems theory, Texts appl. Math. 21 (1995) · Zbl 0839.93001
[14]Duan, Q.; Moireau, P.; Angelini, E.; Chapelle, D.; Laine, A. F.: Simulation of 3D ultrasound with a realistic electro-mechanical model of the heart, (2007)
[15]Fung, Y. C.: Biomechanics: mechanical properties of living tissues, (1993)
[16]B. Hassibi, A.H. Sayed, T. Kailath, Indefinite-quadratic estimation and control, SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), 1999. A unified approach to H2 and Hnbsp; theories, vol. 16.
[17], Mechanics of biological tissue (2006)
[18]Hughes, T. J. R.: The finite element method: linear static and dynamic finite element analysis, (1987)
[19]Jazwinsky, A. H.: Stochastic processes and filtering theory, (1970) · Zbl 0203.50101
[20]S. Julier, J. Uhlmann, Unscented filtering and nonlinear estimation, in: Proceedings of the IEEE, vol. 92, 2004.
[21]Kalman, R. E.; Bucy, R. S.: New results in linear filtering and prediction theory, ASME trans. J. basic engrg. Ser. D 83, 95-108 (1961)
[22]E. Laporte, P. Le Tallec, Numerical Methods in Shape Optimisation and in Sensitivity Analysis, Birkhauser, 2002.
[23]Le Dimet, F. X.; Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observation: theoretical aspects, Tellus 38, 97-110 (1986)
[24]Lebeau, G.: Équation des ondes amorties, Math. phys. Stud 19, 73-109 (1996) · Zbl 0863.58068
[25]Lebeau, G.; Zuazua, E.: Decay rates for the three-dimensional linear system of thermoelasticity, Arch. ration. Mech. anal. 148, No. 3, 179-231 (1999) · Zbl 0939.74016 · doi:10.1007/s002050050160
[26]Lions, J. -L.: Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, (1968) · Zbl 0179.41801
[27]J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués (Tome 1), volume 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris, 1988. · Zbl 0653.93002
[28]Ljung, L.: Asymptotic behavior of the extended Kalman filter as parameter estimator for linear systems, IEEE transactions on automatic control 24, No. 1, 36-50 (1979) · Zbl 0399.93054 · doi:10.1109/TAC.1979.1101943
[29]Ljung, L.: Theory and practice of recursive identification, (1983)
[30]Luenberger, D. G.: An introduction to observers, IEEE transactions on automatic control 16, 596-602 (1971)
[31]Papademetris, X.; Sinusas, A. J.; Dione, D. P.; Duncan, J. S.: Estimation of 3D left ventricular deformation from echocardiography, Medical image analysis 8, 285-294 (2004)
[32]Pham, D. T.; Verron, J.; Roubeaud, M. C.: A singular evolutive interpolated Kalman filter for data assimilation in oceanography, J. mar. Syst. 16, 323-341 (1997)
[33]A. Preumont, Vibration Control of Active Structures An Introduction, second ed., (February), Kluwer Academic Publishers, 2002.
[34]N. Rouche, J. Mawhin, Ordinary differential equations, Surveys and Reference Works in Mathematics, vol. 5, Pitman (Advanced Publishing Program), 1980.
[35]Rouche, N.; Habets, P.; Laloy, M.: Stability theory by Liapunov’s direct method, Appl. math. Sci. 22 (1977) · Zbl 0364.34022
[36]Sainte-Marie, J.; Chapelle, D.; Cimrman, R.; Sorine, M.: Modeling and estimation of the cardiac electromechanical activity, Comput. struct. 84, 1743-1759 (2006)
[37]Shubov, M. A.: The Riesz basis property of the system of root vectors for the equation of a nonhomogeneous damped string: transformation operators method, Methods appl. Anal. 6, No. 4, 571-591 (1999) · Zbl 0986.74039
[38]Smith, N. P.; Nickerson, D. P.; Crampin, E. J.; Hunter, P. J.: Computational mechanics of the heart from tissue structure to ventricular function, J. elast. 61, No. 1, 113-141 (2000)
[39]S. Tong, P. Shi, Cardiac motion recovery: continuous dynamics, discrete measurements, and optimal estimation, in: MICCAI, 2006, pp. 744 – 751.
[40]M. Wu, A.W. Smyth, Application of the unscented Kalman filter for real-time nonlinear structural system identification, Struct. Control Health Monit., in press, doi:10.1002/stc.186.
[41]Zhang, Q.: Adaptive observer for mimo linear time varying systems, IEEE trans. Autom. control 3, No. March, 525-529 (2002)
[42]Q. Zhang, A. Clavel, Adaptive observer with exponential forgetting factor for linear time varying systems, in: Decision and Control, 2001, Proceedings of the 40th IEEE Conference on, vol. 4, Orlando, FL, USA, 2001, pp. 3886 – 3891.