zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Discontinuous modelling of shear bands using adaptive meshfree methods. (English) Zbl 1169.74655
Summary: A simple methodology to model shear bands as strong displacement discontinuities in an adaptive meshfree method is presented. The shear band is represented by a displacement jump at discrete particle positions. The displacement jump in normal direction is suppressed with penalty method. Loss of material stability is used as transition criterion from continuum to discontinuum. The method is two- and three-dimensional. Examples of complicated shear banding including transition from brittle-to-ductile failure are studied and compared to experimental data and other examples from the literature.
74S30Other numerical methods in solid mechanics
74R20Anelastic fracture and damage
[1]Eurocode 2: Planung von Stahlbeton-und Spannbetontragwerken, Teil 1: Grundlagen und Anwendungsregeln fuer den Hochbau. Ernst und Sohn, Berlin, in Betonkalender 1993, T. II, 1993.
[2]P.M.A. Areias, Finite element technology, damage modeling, contact constraints and fracture analysis. Doutoramento, FEUP – Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n 4200-465 Porto, Portugal, 2003. lt;www.fe.up.ptgt;.
[3]Areias, P. M. A.; De Sa, J. M. A. Cesar; Antonio, C. A. Conceicao; Carneiro, J. A. S.A.O.; Teixeira, V. M. P.: Strong displacement discontinuity and Lagrange multipliers in the analysis of finite displacement fracture problems, Comput. mech. 35, No. 1, 54-71 (2004) · Zbl 1109.74350 · doi:10.1007/s00466-004-0603-z
[4]Armero, F.: On the characterization of localized solutions in inelastic solids: an analysis of wave propagation in a softening bar, Comput. methods appl. Mech. engrg. 191, 181-213 (2001) · Zbl 1037.74027 · doi:10.1016/S0045-7825(01)00265-1
[5]Armero, F.; Garikipati, K.: An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids, Int. J. Solids struct. 33, No. 20 – 22, 2863-2885 (1996) · Zbl 0924.73084 · doi:10.1016/0020-7683(95)00257-X
[6]Batra, R. C.; Gummalla, R. R.: Effect on material and geometric parameters on deformations near the notch-tip of a dynamically loaded prenotched plate, Int. J. Fracture 101, 99-140 (2000)
[7]Batra, R. C.; Jaber, N. A.: Failure mode transition in an impact loaded pre-notched plate with four thermoviscoplastic relations, Int. J. Fracture 110, 47-71 (2001)
[8]Batra, R. C.; Jaber, N. A.; Malsbury, M. E.: Analysis of failure modes in an impact loaded thermoviscoplastic prenotched plate, Int. J. Plasticity 19, 139-196 (2003) · Zbl 1032.74647 · doi:10.1016/S0749-6419(01)00032-8
[9]Batra, R. C.; Ravisankar, M. V. S.: Three-dimensional numerical simulation of the kalthoff experiment, Int. J. Fracture 105, 161-186 (2000)
[10]Bazant, Z. P.; Belytschko, T.: Wave propagation in a strain-softening bar: exact solution, J. engrg. Mech. – ASCE 111, No. 3, 381-389 (1985)
[11]Belytschko, T.; Bindemann, L. P.: Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Comput. methods appl. Mech. engrg. 88, 311-340 (1991) · Zbl 0742.73019 · doi:10.1016/0045-7825(91)90093-L
[12]Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. methods engrg. 45, No. 5, 601-620 (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[13]Belytschko, T.; Chen, H.; Xu, J.; Zi, G.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Int. J. Numer. methods engrg. 58, No. 12, 1873-1905 (2003) · Zbl 1032.74662 · doi:10.1002/nme.941
[14]Belytschko, T.; Chiang, H-Y; Plaskacz, E.: High resolution two-dimensional shear band computations: imperfections and mesh dependence, Comput. methods appl. Mech. engrg. 119, 1-15 (1994) · Zbl 0849.73064 · doi:10.1016/0045-7825(94)00073-5
[15]Belytschko, T.; Fish, J.; Englemann, B.: A finite element method with embedded localization zones, Comput. methods appl. Mech. engrg. 70, 59-89 (1988) · Zbl 0653.73032 · doi:10.1016/0045-7825(88)90180-6
[16]Belytschko, T.; Liu, W. K.; Moran, B.: Nonlinear finite elements for continua and structures, (2000)
[17]Belytschko, T.; Lu, Y. Y.: Element-free Galerkin methods for static and dynamic fracture, Int. J. Solids struct. 32, 2547-2570 (1995) · Zbl 0918.73268 · doi:10.1016/0020-7683(94)00282-2
[18]Belytschko, T.; Lu, Y. Y.; Gu, L.: Element-free Galerkin methods, Int. J. Numer. methods engrg. 37, 229-256 (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[19]Belytschko, T.; Ong, J. S-J.: Hourglass control in linear and nonlinear problems, Comput. methods appl. Mech. engrg. 43, 251-276 (1984)
[20]Belytschko, T.; Xiao, S. P.: Stability analysis of particle methods with corrected derivatives, Comput. math. Appl. 43, 329-350 (2002) · Zbl 1073.76619 · doi:10.1016/S0898-1221(01)00290-5
[21]Bonet, J.; Bhargava, P.: A uniform deformation gradient hexadron element with artificial hourglass control, Int. J. Numer. methods engrg. 38, 2809-2828 (1995) · Zbl 0835.73069 · doi:10.1002/nme.1620381608
[22]Bruhns, O. T.; Xiao, H.; Meyers, A.: Constitutive inequalities for an isotropic elastic strain-energy function based on hencky’s logarithmic strain tensor, Proc. royal soc. A, London 457, 2207-2226 (2001) · Zbl 1048.74505 · doi:10.1098/rspa.2001.0818
[23]Camacho, G. T.; Ortiz, M.: Computational modeling of impact damage in brittle materials, Int. J. Solids struct. 33, 2899-2938 (1996) · Zbl 0929.74101 · doi:10.1016/0020-7683(95)00255-3
[24]De Sa, J. M. A. Cesar; Areias, P. M. A.; Jorge, R. M. N.: Quadrilateral elements for the solution of elasto-plastic finite strain problems, Int. J. Numer. methods engrg. 51, 883-917 (2001) · Zbl 1023.74045 · doi:10.1002/nme.183
[25]Chen, J. S.; Yoon, S.; Wang, H.; Liu, W. K.: An improved reproducing kernel method for nearly incompressible finite elasticity, Comput. methods appl. Mech. engrg. 181, No. 1 – 3, 117-145 (2000) · Zbl 0973.74088 · doi:10.1016/S0045-7825(99)00067-5
[26]Clifton, R. J.; Duffy, J.; Hartley, K. A.: On critical conditions for shear band formation at high strain rates, Scripta metall. 18, No. 5, 443-448 (1984)
[27]Diez, P.; Arroyo, M.; Huerta, A.: Adaptivity based on error estimation for viscoplastic softening materials, Mech. cohesive-frictional mater. 5, 87-112 (2000)
[28]Dolbow, J.; Belytschko, T.: Volumetric locking in the element free Galerkin method, Int. J. Numer. methods engrg. 46, 925-942 (1999) · Zbl 0967.74079 · doi:10.1002/(SICI)1097-0207(19991030)46:6<925::AID-NME729>3.0.CO;2-Y
[29]Dolbow, J.; Moes, N.; Belytschko, T.: Discontinuous enrichment in finite elements with a partition of unity method, Finite elem. Anal. des. 36, No. 3, 235-260 (2000) · Zbl 0981.74057 · doi:10.1016/S0168-874X(00)00035-4
[30]Evans, L.; Gariepy, R.: Measure theory and fine properties of functions, (1992) · Zbl 0804.28001
[31]Ewing, D. J. F.; Hill, R.: The plastic constraint of v-notched tension bars, J. mech. Phys. solids (1967)
[32]Falk, M. L.; Needleman, A.; Rice, J. R.: A critical evaluation of cohesive zone models of dynamic fracture, J. phys. IV 11, No. PR5, 43-50 (2001)
[33]Flory, R. J.: Thermodynamic relations for highly elastic materials, Trans. Faraday soc. 57, 829-838 (1961)
[34]Gasser, T. C.; Holzapfel, G. A.: Modeling 3d crack propagation in unreinforced concrete using pufem, Comput. methods appl. Mech. engrg. (2005)
[35]Grady, D. E.: Dissipation in adiabatic shear bands, Mech. mater. 17, 289-293 (1994)
[36]Gravouil, A.; Moes, N.; Belytschko, T.: Non-planar 3D crack growth by the extended finite element and level sets – part ii: Level set update, Int. J. Numer. methods engrg. 53, 2569-2586 (2002) · Zbl 1169.74621 · doi:10.1002/nme.429
[37]R.R. Gummalla, Effect of material and geometric parameters on deformations of a dynamically loaded prenotched plate, Master’s thesis, Virginia Polytechnical Institute and State University, 1999.
[38]Hao, S.; Comec, A.; Schwalbe, K. H.: Plastic stress-strain fields and limit loads of a plane strain cracked tensile panel with a mismatched welded joint, Int. J. Solids struct. 34, 297-311 (1997) · Zbl 0946.74562 · doi:10.1016/S0020-7683(96)00021-2
[39]Hao, S.; Liu, W. K.; Chang, C. T.: Computer implementation of damage models by finite element and meshfree methods, Comput. methods appl. Mech. engrg. 187, No. 3 – 4, 401-440 (2000) · Zbl 0980.74063 · doi:10.1016/S0045-7825(00)80003-1
[40]Hao, S.; Moran, B.; Liu, W. K.; Olson, B.: A hierarchical multi-physics model for design of high toughness steels, J. comput.-aided mater. Des. 10, No. 2, 99-142 (2003)
[41]Huerta, A.; Fernandez-Mendez, S.: Locking in the incompressible limit for the element-free Galerkin method, Int. J. Numer. methods engrg. 51, 1361-1383 (2001) · Zbl 1065.74635 · doi:10.1002/nme.213
[42]Huerta, A.; Vidal, Y.; Vilon, P.: Pseudo-divergence-free element free Galerkin method for incompressible fluid flow, Comput. methods appl. Mech. engrg. 193, No. 12 – 14, 1119-1136 (2004) · Zbl 1060.76626 · doi:10.1016/j.cma.2003.12.010
[43]Hughes, T. J. R.: Generalization of selective integration procedures to anisotropic and nonlinear media, Int. J. Numer. methods engrg. 15, No. 9, 1413-1418 (1980) · Zbl 0437.73053 · doi:10.1002/nme.1620150914
[44]Jirasek, M.: Comparative study on finite elements with embedded discontinuities, Comput. methods appl. Mech. engrg. 188, 307-330 (2000) · Zbl 1166.74427 · doi:10.1016/S0045-7825(99)00154-1
[45]G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures, in: Proceedings of the 7th International Symposium on Ballistics, 1983.
[46]Kalthoff, J. F.; Winkler, S.: Failure mode transition at high rates of shear loading, Int. conf. Impact loading dynam. Behav. mater. 1, 185-195 (1987)
[47]Kalthoff, J. F.: Modes of dynamic shear failure in solids, Int. J. Fracture 101, 1-31 (2000)
[48]Krysl, P.; Belytschko, T.: The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks, Int. J. Numer. methods engrg. 44, No. 6, 767-800 (1999) · Zbl 0953.74078 · doi:10.1002/(SICI)1097-0207(19990228)44:6<767::AID-NME524>3.0.CO;2-G
[49]Lasry, D.; Belytschko, T.: Localization limiters in transient problems, Int. J. Solids struct. 24, No. 6, 581-597 (1988) · Zbl 0636.73021 · doi:10.1016/0020-7683(88)90059-5
[50]Lee, Y. W.; Woertz, J. C.; Wierzbicki, T.: Fracture prediction of thin plates under hemi-spherical punch with calibration and experimental verification, Int. J. Mech. sci. (2004)
[51]Lemonds, J.; Needleman, A.: Finite element analysis of shear localization in rate and temperature dependent solids, Mech. mater. 5, 339-361 (1986)
[52]Li, S.; Hao, W.; Liu, W. K.: Mesh-free simulations of shear banding in large deformation, Int. J. Solids struct. 37, 7185-7206 (2000) · Zbl 0995.74082 · doi:10.1016/S0020-7683(00)00195-5
[53]Li, S.; Liu, W. K.; Rosakis, A. J.; Belytschko, T.; Hao, W.: Mesh free Galerkin simulations of dynamic shear band propagation and failure mode transition, Int. J. Solids struct. 39, 1213-1240 (2002) · Zbl 1090.74698 · doi:10.1016/S0020-7683(01)00188-3
[54]Lin, R.: Numerical study of consistency of rate constitutive equations with elasticity at finite deformations, Int. J. Numer. methods engrg. 55, 1053-1077 (2002) · Zbl 1037.74004 · doi:10.1002/nme.536
[55]Lu, Y. Y.; Belytschko, T.; Tabbara, M.: Element-free Galerkin method for wave-propagation and dynamic fracture, Comput. methods appl. Mech. engrg. 126, No. 1 – 2, 131-153 (1995) · Zbl 1067.74599 · doi:10.1016/0045-7825(95)00804-A
[56]Meyers, M. A.; Nesternko, V. F.; Lasalvia, J. C.; Xue, Q.: Shear localization in dynamic deformation of materials: microstructural evolution and self-organization, Mater. sci. Eng. (2001)
[57]Minnaar, K.; Zhou, M.: An analysis of the dynamic failure resistance of structural metals, J. mech. Phys. solids 46, No. 10, 2155-2170 (1998)
[58]Moes, N.; Belytschko, T.: Extended finite element method for cohesive crack growth, Eng. fracture mech. 69, 813-834 (2002)
[59]Moes, N.; Dolbow, J.; Belytschko, T.: A finite element method for crack growth without remeshing, Int. J. Numer. methods engrg. 46, No. 1, 133-150 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[60]Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.: On numerically accurate finite element solutions in the fully plastic range, Comput. methods appl. Mech. engrg. 4, 153-177 (1974) · Zbl 0284.73048 · doi:10.1016/0045-7825(74)90032-2
[61]Needleman, A.: Dynamics shear band development in plane strain, J. appl. Mech. 56, 1-9 (1989)
[62]Needleman, A.; Tvergaard, V.: Analysis of brittle-ductile transition under dynamic shear loading, Int. J. Solids struct. 32, 2571-2590 (1995) · Zbl 0919.73222 · doi:10.1016/0020-7683(94)00283-3
[63]Nesternko, V. F.; Meyers, M. A.; Wright, T. W.: Self-organization in the initiation of adiabatic shear bands, Acta mater. (1998)
[64]Oliver, J.; Cervera, M.; Manzoli, O.: Strong discontinuities and continuum plasticity models: the strong discontinuity approach, Int. J. Plasticity 15, 319-351 (1999) · Zbl 1057.74512 · doi:10.1016/S0749-6419(98)00073-4
[65]Oliver, J.; Huespe, A. E.; Samaniego, E.: A study on finite elements for capturing strong discontinuities, Int. J. Numer. methods engrg. 56, 1291-1305 (2003) · Zbl 1038.74645 · doi:10.1002/nme.657
[66]Olmstead, W. E.; Nemat-Nasser, S.; Ni, L.: Shear bands as surfaces of discontinuity, J. mech. Phys. solids 42, 697-709 (1994) · Zbl 0803.73034 · doi:10.1016/0022-5096(94)90059-0
[67]Organ, D.; Fleming, M.; Terry, T.; Belytschko, T.: Continuous meshless approximations for nonconvex bodies by diffraction and transparency, Comput. mech. 18, 225-235 (1996) · Zbl 0864.73076 · doi:10.1007/BF00369940
[68]Ortiz, M.; Leroy, Y.; Needleman, A.: Finite element method for localized failure analysis, Comput. methods appl. Mech. engrg. 61, No. 2, 189-214 (1987) · Zbl 0597.73105 · doi:10.1016/0045-7825(87)90004-1
[69]Perzyna, P.: Fundamental problems in viscoplasticity, (1966)
[70]Piltner, R.; Taylor, R. L.: A symmetric construction of b-bar functions for linear and non-linear mixed-enhanced finite elements for plane elasticity problems, Int. J. Numer. methods engrg. 44, 615-639 (1999) · Zbl 0947.74067 · doi:10.1002/(SICI)1097-0207(19990220)44:5<615::AID-NME518>3.0.CO;2-U
[71]Rabczuk, T.; Belytschko, T.: Cracking particles: A simplified meshfree method for arbitrary evolving cracks, Int. J. Numer. methods engrg. 61, No. 13, 2316-2343 (2004) · Zbl 1075.74703 · doi:10.1002/nme.1151
[72]Rabczuk, T.; Belytschko, T.: Adaptivity for structured meshfree particle methods in 2D and 3D, Int. J. Numer. methods engrg. 63, No. 11, 1559-1582 (2005) · Zbl 1145.74041 · doi:10.1002/nme.1326
[73]Rabczuk, T.; Belytschko, T.: A three dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. methods appl. Mech. engrg. 196, No. 29 – 30, 2777-2799 (2007) · Zbl 1128.74051 · doi:10.1016/j.cma.2006.06.020
[74]Rabczuk, T.; Belytschko, T.; Xiao, S. P.: Stable particle methods based on Lagrangian kernels, Comput. methods appl. Mech. engrg. 193, 1035-1063 (2004) · Zbl 1060.74672 · doi:10.1016/j.cma.2003.12.005
[75]Reinhardt, W. D.; Dubey, R. N.: Application of objective rates in mechanical modelling of solids, ASME J. Appl. mech. 118, 692-698 (1996) · Zbl 0893.73004 · doi:10.1115/1.2823351
[76]Samaniego, E.; Belytschko, T.: Continuum – discontinuum modelling of shear bands, Int. J. Numer. methods engrg. 62, 1857-1872 (2005) · Zbl 1121.74476 · doi:10.1002/nme.1256
[77]Shih, C. J.; Meyers, M. A.; Nesterenko, V. F.: High-strain-rate deformation of granular silicon carbide, Acta mater. (1998)
[78]Simo, J. C.; Armero, F.: Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int. J. Numer. methods engrg. 33, 1413-1449 (1992) · Zbl 0768.73082 · doi:10.1002/nme.1620330705
[79]Ventura, G.; Moran, B.; Belytschko, T.: Dislocations by partition of unity, Int. J. Numer. methods engrg. 62, No. 11, 1463-1487 (2005) · Zbl 1078.74665 · doi:10.1002/nme.1233
[80]Vidal, Y.; Villon, P.; Huerta, A.: Locking in the incompressible limit: pseudo-divergence-free element-free Galerkin, Revue europeene des elements finis 11, No. 7 – 8, 869-892 (2002) · Zbl 1120.74837 · doi:10.3166/reef.11.869-892
[81]Wang, D.; Chen, J-S.: Locking-free stabilized conforming nodal integration for meshfree mindlind-Reissner plate formulation, Comput. methods appl. Mech. engrg. 193, 1065-1083 (2004) · Zbl 1060.74675 · doi:10.1016/j.cma.2003.12.006
[82]Wang, W. M.; Sluys, L. J.; Deborst, R.: Viscoplasticity for instabilities due to strain softening and strain-rate softening, Int. J. Numer. methods engrg. 40, No. 20, 3839-3864 (1997) · Zbl 0974.74511 · doi:10.1002/(SICI)1097-0207(19971030)40:20<3839::AID-NME245>3.0.CO;2-6
[83]Wright, T. W.; Walter, J. W.: The asymptotic structure of an adiabatic shear band in antiplane motion, J. mech. Phys. solids 44, No. 1, 77-97 (1996) · Zbl 1054.74510 · doi:10.1016/0022-5096(95)00066-6
[84]Xiao, S. P.; Belytschko, T.: Material stability analysis of particle methods, Adv. comput. Math. (2005)
[85]Xu, X. -P.; Needleman, A.: Numerical simulations of fast crack growth in brittle solids, J. mech. Phys. solids 42, 1397-1434 (1994) · Zbl 0825.73579 · doi:10.1016/0022-5096(94)90003-5
[86]Xue, Q.; Nesterenko, V. F.; Meyers, M. A.: Evaluation of the collapsing thick-walled cylinder technique for shear-band spacing, Int. J. Impact engrg. (2003)
[87]Yang, Q.; Mota, A.; Ortiz, M.: A class of variational strain-localization finite elements, Int. J. Numer. methods engrg. 62, No. 8, 1013-1037 (2005) · Zbl 1081.74045 · doi:10.1002/nme.1199
[88]Zhou, F.; Molinari, J. F.: Dynamic crack propagation with cohesive elements: a methodology to address mesh dependence, Int. J. Numer. methods engrg. 59, No. 1, 1-24 (2004) · Zbl 1047.74074 · doi:10.1002/nme.857
[89]Zhou, M.; Ravichandran, G.; Rosakis, A.: Dynamically propagating shear bands in impact-loaded prenotched plates-ii, J. mech. Phys. solids 44, 1007-1032 (1996)
[90]Zhu, T.; Atluri, S. N.: A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Comput. mech. 21, No. 3, 211-222 (1998) · Zbl 0947.74080 · doi:10.1007/s004660050296