zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of G/D/1 queueing systems with inputs satisfying large deviation principle under weak* topology. (English) Zbl 1169.90331
Summary: The large deviation principle (LDP) which has been effectively used in queueing analysis is the sample path LDP, the LDP in a function space endowed with the uniform topology. Chang has shown that in the discrete-time G/D/1 queueing system under the FIFO discipline, the departure process satisfies the sample path LDP if so does the arrival process. In this paper, we consider arrival processes satisfying the LDP in a space of measures endowed with the weak* topology which holds under a weaker condition. It is shown that in the queueing system mentioned above, the departure processes still satisfies the sample path LDP. Our result thus covers arrival processes which can be ruled out in the work of Chang. The result is then applied to obtain the exponential decay rate of the queue length probability in an intree network as was obtained by Chang, who considered the arrival process satisfying the sample path LDP.
MSC:
90B22Queues and service (optimization)
60K25Queueing theory