zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Traveling wave solutions of the generalized nonlinear evolution equations. (English) Zbl 1170.35514
Summary: Solitary wave solutions for a family of nonlinear evolution equations with an arbitrary parameter in the exponents are constructed. Some of the obtained solutions seem to be new.
MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
35C05Solutions of PDE in closed form
References:
[1]Korteweg, D. J.; De Vries, G.: On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. mag. 39, 422-443 (1895) · Zbl 26.0881.02
[2]Zabuski, N. J.; Kruskal, M. D.: Integration of ”solitons” in a collisionless plasma and the recurrence of initial states, Phys. rev. Lett. 15, 240-242 (1965) · Zbl 1201.35174 · doi:10.1103/PhysRevLett.15.240 · doi:http://staff.ustc.edu.cn/~jzheng/PhysRevLett_15_0240.pdf
[3]Gardner, C. S.; Green, J. M.; Kruskal, M. D.; Miura, R. M.: Method for solving the Korteweg – de Vries equations, Phys. rev. Lett. 19, 1095-1097 (1967) · Zbl 1103.35360 · doi:10.1103/PhysRevLett.19.1095
[4]Lax, P. D.: Integrals of nonlinear equations of evolution and solitary waves, Commun. pure appl. Math. 21, 467-490 (1968) · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[5]Ablowitz, M. J.; Clarkson, P. A.: Solitons nonlinear evolution equations and inverse scattering, (1991) · Zbl 0762.35001
[6]Kudryashov, N. A.: Analytical theory of nonlinear differential equations, (2004)
[7]Kuramoto, Y.; Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. theor. Phys. 52, No. 2, 356-369 (1976)
[8]Benney, D. J.: Long waves on liquid films, J. math. Phys. 45, 150 (1966) · Zbl 0148.23003
[9]Topper, J.; Kawahara, T.: Approximate equation for long nonlinear waves on a viscous fluid, J. phys. Soc. jpn. 44, 663-666 (1978)
[10]Shkadov, V. Y.: Solitary waves in layer of viscous fluid, Fluid dynam. 1, 63-66 (1977)
[11]Cohen, B. I.; Krommers, J. A.; Tang, W. M.; Rosenbluth, M. N.: Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nucl. fusion 16, No. 6, 971-992 (1976)
[12]Michelson, D.: Elementary particles as solutions of the Sivashinsky equation, Physica D 44, 502-556 (1990) · Zbl 0702.34007 · doi:10.1016/0167-2789(90)90160-Q
[13]Lu, D.; Hong, B.; Tian, L.: New solitary wave and periodic wave solutions for general types of KdV and KdV – Burgers equations, Commun. nonlinear sci. Numer. simul. 14, 77-84 (2009) · Zbl 1221.35352 · doi:10.1016/j.cnsns.2007.08.007
[14]Peng, Y. Z.: Exact travelling wave solutions for the Zakharov – Kuznetsov equation, Appl. math. Comput. 199, 397-405 (2008) · Zbl 1138.76026 · doi:10.1016/j.amc.2007.08.095
[15]Zhu, Z. N.: Exact solutions to two-dimensional generalized fifth order Kuramoto – Sivashinsky type equation, Chin. J. Phys. 84, No. 2, 85-90 (1996)
[16]Qin, M.; Fan, G.: An effective method for finding special solutions of nonlinear differential equations with variable coefficients, Phys. lett. A 372, 3240-3242 (2008) · Zbl 1220.35099 · doi:10.1016/j.physleta.2008.01.058
[17]Kudryashov, N. A.: Solitary and periodic solutions of the generalized Kuramoto – Sivashinsky equation, Regul. chaotic dynam. 13, No. 3, 234-238 (2008) · Zbl 1229.35229 · doi:10.1134/S1560354708030088
[18]Kudryashov, N. A.: Exact soliton solutions of the generalized evolution equation of wave dynamics, J. appl. Math. mech. 52, No. 3, 360-365 (1988)
[19]Conte, R.; Museette, M.: Painlevé analysis and Bäcklund transformation in the Kuramoto – Sivashinsky equation, J. phys. A: math. Gen. 22, 169-177 (1989) · Zbl 0687.35087 · doi:10.1088/0305-4470/22/2/006
[20]Kudryashov, N. A.: Exact solutions of the generalized Kuramoto – Sivashinsky equation, Phys. lett. A 147, 287-291 (1990)
[21]Kudryashov, N. A.: On types of nonlinear nonintegrable equations with exact solutions, Phys. lett. A 155, 269-275 (1991)
[22]Kudryashov, N. A.; Zargaryan, E. D.: Solitary waves in active – dissipative dispersive media, J. phys. A: math. Gen. 29, 8067-8077 (1996) · Zbl 0901.35090 · doi:10.1088/0305-4470/29/24/029
[23]Berloff, N. G.; Howard, L. N.: Solitary and periodic solutions of nonlinear nonintegrable equations, Stud. appl. Math. 99, 1-24 (1997) · Zbl 0880.35105 · doi:10.1111/1467-9590.00054
[24]Davalos-Orozco, L. A.; Busse, F. N.: Instability of a thin film flowing on a rotating horizontal or inclined plane, Phys. rev. E 65, 026312-2-026312-10 (2002)
[25]Fu, S.; Liu, S.; Liu, S.: New exact solutions to the KdV – Burgers – Kuramoto equation, Chaos solitons fract. 23, 609-616 (2005)
[26]Zhang, S.: New exact solutions of the KdV – Burgers – Kuramoto equation, Phys. lett. A 358, 414-420 (2006) · Zbl 1142.35592 · doi:10.1016/j.physleta.2006.05.071
[27]Khuri, S. A.: Traveling wave solutions for nonlinear differential equations: a unified ansatse approach, Chaos solitons fract. 32, 252-258 (2007) · Zbl 1137.35422 · doi:10.1016/j.chaos.2005.10.106
[28]Nickel, J.: Traveling wave solutions to the Kuramoto – Sivashinsky equation, Chaos solitons fract. 33, 1376-1382 (2007) · Zbl 1137.35063 · doi:10.1016/j.chaos.2006.01.087
[29]Kudryashov, N. A.: Exact solitary waves of the Fisher equation, Phys. lett. A 342, 99-106 (2005) · Zbl 1222.35054 · doi:10.1016/j.physleta.2005.05.025
[30]Kudryashov, N. A.: Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos solitons fract. 24, 1217-1231 (2005) · Zbl 1069.35018 · doi:10.1016/j.chaos.2004.09.109
[31]Kudryashov, N. A.; Demina, M. V.: Polygons of differential equation for finding exact solutions, Chaos solitons fract. 33, 1480-1496 (2007) · Zbl 1133.35084 · doi:10.1016/j.chaos.2006.02.012
[32]Kudryashov, N. A.; Loguinova, N. B.: Extended simplest equation method for nonlinear differential equations, Appl. math. Comput. 205, No. 1, 396-402 (2008) · Zbl 1168.34003 · doi:10.1016/j.amc.2008.08.019
[33]Kudryashov, N. A.; Loguinova, N. B.: Be careful with exp-function method, Commun. nonlinear sci. Numer. simul. (2008)