zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fractional optimal control of a 2-dimensional distributed system using eigenfunctions. (English) Zbl 1170.70397
Summary: This paper presents an eigenfunctions expansion based scheme for Fractional Optimal Control (FOC) of a 2-dimensional distributed system. The fractional derivative is defined in the Riemann-Liouville sense. The performance index of a FOC problem is considered as a function of both state and control variables, and the dynamic constraints are expressed by a Partial Fractional Differential Equation (PFDE) containing two space parameters and one time parameter. Eigenfunctions are used to eliminate the terms containing space parameters and to define the problem in terms of a set of generalized state and control variables. For numerical computation Grünwald-Letnikov approximation is used. A direct numerical technique is proposed to obtain the state and the control variables. For a linear case, the numerical technique results into a set of algebraic equations which can be solved using a direct or an iterative scheme. The problem is solved for different number of eigenfunctions and time discretization. Numerical results show that only a few eigenfunctions are sufficient to obtain good results, and the solutions converge as the size of the time step is reduced.
MSC:
70Q05Control of mechanical systems (general mechanics)
26A33Fractional derivatives and integrals (real functions)
References:
[1]Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)
[2]Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
[3]Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives–Theory and Applications. Gordon and Breach, Longhorne (1993)
[4]Carpinteri, A., Mainardi, F.: Fractal and Fractional Calculus in Continuum Mechanics. Springer, Vienna (1997)
[5]Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997) · doi:10.1115/1.3101682
[6]Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
[7]Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, River Edge (2000)
[8]Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)
[9]Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
[10]Dorcak, L.: Numerical models for simulation the fractional-order control systems. UEF SAV, The Academy of Sciences Institute of Experimental Physics, Kosice, Slovak Republic (1994)
[11]Dorcak, L., Lesco, V., Kostial, I.: Identification of fractional-order dynamical systems. In: Proceedings of the 12th International Conference on Process Control and Simulation ASRTP’96, pp. 62–68. Kosice, Slovak Republic (1996)
[12]Podlubny, I., Dorcak, L., Kostial, I.: On fractional derivatives, fractional-order dynamic systems and PI λ D μ controllers. In: Proceedings of the 1997 36th IEEE Conference on Decision and Control, Part 5, pp. 4985–4990. San Diego, CA, USA, 10–12 December 1997
[13]Vinagre, B.M., Podlubny, I., Hernández, A., Feliu, V.: Some applications of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3, 231–248 (2000)
[14]Barbosa, R.S., Machado, J.A.T., Ferreira, I.M.: A Fractional calculus perspective of PID tuning. In: Proceedings of DETC03 ASME 2003 Design Engineering Technical Conference and Computers and Information in Engineering Conference Chicago, IL, 2–6 September 2003
[15]Ma, C., Hori, Y.: Fractional order control and its applications of PI α D controller robust two-inertia speed control. In: The 4th International Power Electronics and Motion Control Conference, IPEMC, 14–16 August 2004
[16]Barbosa, R.S., Machado, J.A.T.: Implementation of discrete-time fractional-order controllers based on LS approximations. Acta Polytech. Hung. 3, 4 (2006)
[17]Rudas, I.J., Tar, J.K., Patkai, B.: Compensation of dynamic friction by a fractional order robust controller. In: IEEE International Conference on Computational Cybernetics, pp. 9–14. Tallinn, 20–22 August 2006
[18]Outsaloup, A.: La Commande CRONE: Commande Robuste d’Ordre Non Entiére. Hermes, Paris (1991)
[19]Podlubny, I.: Fractional-order systems and PI λ D μ controllers. IEEE Trans. Autom. Control 44, 208–214 (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[20]Petras, I.: The fractional-order controllers: methods for their synthesis and application. J. Electr. Eng. 50, 284–288 (1999)
[21]Machado, J.A.T.: Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 27, 107–122 (1997)
[22]Machado, J.A.T.: Fractional-order derivative approximations in discrete-time control systems. Syst. Anal. Model. Simul. 34, 419–434 (1999)
[23]Bagley, R.L., Calico, R.A.: Fractional order state Equations for the control viscoelastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991) · doi:10.2514/3.20641
[24]Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)
[25]Bryson, Jr., A.E., Ho, Y.C.: Applied Optimal Control: Optimization, Estimization, and Control. Blaisdell, Waltham (1975)
[26]Sage, A.P., White, III, C.C.: Optimum Systems Control. Prentice-Hall, Englewood Cliffs (1977)
[27]Gregory, J., Lin, C.: Constraint Optimization in the Calculus of Variations and Optimal Control Theory. Van Nostrand-Reinhold, New York (1992)
[28]Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. Math. Anal. Appl. 272, 368–379 (2002) · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4
[29]Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004) · Zbl 1121.70019 · doi:10.1007/s11071-004-3764-6
[30]Agrawal, O.P.: A general scheme for stochastic analysis of fractional optimal control problems. In Mahaute, A.L., Machado, J.A.T., Trigeassou, J.C., Sabatier, J. (eds.) Fractional Differentiation and Its Applications, pp. 615–624 (2005)
[31]Agrawal, O.P.: A formulation and a numerical scheme for fractional optimal control problems. In: Proceedings of the 2nd IFAC Conference on Fractional Differentiations and Its Applications, IFAC (2006)
[32]Agrawal, O.P.: A quadratic numerical scheme for fractional optimal control problems. J. Dyn. Syst. Measur. Control (2008, to appear)
[33]Agrawal, O.P., Baleanu, D.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13, 1269–1281 (2007) · Zbl 1182.70047 · doi:10.1177/1077546307077467
[34]Agrawal, O.P.: Fractional Optimal Control of a Distributed System Using Eigenfunction. In: Proceedings of the 2007 ASME International Design Engineering Technical Conferences, Las Vegas, NV, 4–7 September 2007
[35]Hanyga, A.: Multi-dimensional solutions of space-time-fractional diffusion euations. Proc. R. Soc. Lond. A 458, 429–450 (2002) · Zbl 0999.60035 · doi:10.1098/rspa.2001.0893
[36]Hanyga, A.: Multi-dimensional solutions of time-fractional diffusion-wave equations. Proc. R. Soc. Lond. A 458, 933–957 (2002) · Zbl 1153.35347 · doi:10.1098/rspa.2001.0904
[37]Butzer, P.L., Westphal, U.: An introduction to fractional calculus. In: Hilfer, R. (ed.) Applications of Fractional Calculus in Physics, pp. 1–85. World Scientific, Singapore (2000)