zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite-time chaos control of unified chaotic systems with uncertain parameters. (English) Zbl 1170.70401
Summary: This paper is concerned with finite-time chaos control of unified chaotic systems with uncertain parameters. Based on the finite-time stability theory in the cascade-connected system, a nonlinear control law is presented to achieve finite-time chaos control. The controller is simple and easy to be constructed. Simulation results for Lorenz, Lü, and Chen chaotic systems are provided to illustrate the effectiveness of the proposed scheme.
MSC:
70Q05Control of mechanical systems (general mechanics)
70K55Transition to stochasticity (chaotic behavior)
93C15Control systems governed by ODE
References:
[1]Colet, P., Roy, R.: Digital communication with synchronization chaotic laser. Opt. Lett. 19(24), 2056–2058 (1994) · doi:10.1364/OL.19.002056
[2]Sugawara, T., Tachikawa, M., Tsukamoto, T., Shimizu, T.: Observation of synchronization in laser chaos. Phys. Rev. Lett. 72(22), 3502–3505 (1994) · doi:10.1103/PhysRevLett.72.3502
[3]Lu, J., Wu, X., Lü, J.: Synchronization of a unified system and the application in secure communication. Phys. Lett. A 305, 365–370 (2002) · Zbl 1005.37012 · doi:10.1016/S0375-9601(02)01497-4
[4]Yassen, M.T.: Controlling, synchronization and tracking chaotic Liu system using active backstepping design. Phys. Lett. A 360, 582–587 (2007) · Zbl 1236.93086 · doi:10.1016/j.physleta.2006.08.067
[5]Tao, C., Liu, X.: Feedback and adaptive control and synchronization of a set of chaotic and hyperchaotic systems. Chaos Solitons Fractals 32, 1572–1581 (2007) · Zbl 1129.93043 · doi:10.1016/j.chaos.2005.12.005
[6]Tavazoei, M.S., Haeri, M.: Determination of active sliding mode controller parameters in synchronizing different chaotic systems. Chaos Solitons Fractals 32, 583–591 (2007) · doi:10.1016/j.chaos.2005.10.103
[7]Jamal, M.N., Ammar, N.N.: Chaos control using sliding-mode theory. Chaos Solitons Fractals 33, 695–702 (2007) · doi:10.1016/j.chaos.2006.01.071
[8]Wang, H., Han, Z., Zhang, W., Xie, Q.: Synchronization of unified chaotic systems with uncertain parameters based on the CLF. Nonlinear Anal.: Real World Appl. (2007). doi: 10.1016/j.nonrwa.2007.10.025
[9]Wang, F., Si, S., Shi, G.: Chaotic synchronization problem of finite-time convergence based on terminal slide mode control. Acta Phys. Sin. 55, 5694–5699 (2006)
[10]Wu, G., Wang, C., Zeng, Q.: Synchronization of chaotic systems with parametric uncertainty using terminal sliding mode adaptive control. Control Decision 21, 229–232 (2006)
[11]Gao, T., Chen, Z., Yuan, Z.: Robust finite time synchronization of choatic systems. Acta Phys. Sin. 54, 2574–2579 (2005)
[12]Lu, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12(12), 2917–2926 (2002) · Zbl 1043.37026 · doi:10.1142/S021812740200631X
[13]Hong, Y., Yang, G., Linda, B., Wang, H.: Global finite-time stabilization: from state feedback to output feedback. In: Proceedings of the 39th IEEE Conference on Decision and Control Sydney, pp. 2908–2913. Australia, December 2000
[14]Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, New Jersey (2002)
[15]Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196