zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Observable correlations in two-qubit states. (English) Zbl 1170.81016
Summary: The total correlations in a bipartite quantum state are well quantified by the quantum mutual information, the amount of which is not necessarily fully extractable by local measurements. The observable correlations are the maximal correlations that can be extracted via local measurements, and have an intuitive interpretation as a measure of classical correlations. We evaluate the observable correlations for generic two-qubit states and obtain analytical expressions in some particular cases. The intricate and subtle relationships among the total, quantum and classical correlations are illustrated in terms of observable correlations. In the course, we also disprove an intuitive conjecture of Lindblad which states that the classical correlations account for at least half of the total correlations, or equivalently, correlations are more classical than quantum.
81P68Quantum computation
94A40Channel models (including quantum)
[1]Adami, C., Cerf, N.J.: Von Neumann capacity of noisy quantum channels. Phys. Rev. A 56, 3470–3483 (1997) · doi:10.1103/PhysRevA.56.3470
[2]Barnett, S.M., Phoenix, S.J.D.: Entropy as a measure of quantum optical correlation. Phys. Rev. A 40, 2404–2409 (1989) · doi:10.1103/PhysRevA.40.2404
[3]Barnett, S.M., Phoenix, S.J.D.: Information theory, squeezing, and quantum correlations. Phys. Rev. A 44, 535–545 (1991) · doi:10.1103/PhysRevA.44.535
[4]Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996) · doi:10.1103/PhysRevA.54.3824
[5]Bhatia, R.: Matrix Analysis. Springer, Berlin (1997)
[6]Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)
[7]Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1974)
[8]Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935) · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[9]Everett III, H.: The theory of the universal wavefunction. In: DeWitt, B.S., Graham, N. (eds.) The Many-Worlds Interpretation of Quantum Mechanics, pp. 3–140. Princeton University Press, Princeton (1973) (written in 1957, first publication herein)
[10]Groisman, B., Popescu, S.A.: Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005) · doi:10.1103/PhysRevA.72.032317
[11]Hall, M.J.W., Andersson, E., Brougham, T.: Maximum observable correlation for a bipartite quantum system. Phys. Rev. A 74, 062308 (2006) · doi:10.1103/PhysRevA.74.062308
[12]Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6905 (2001) · Zbl 0988.81023 · doi:10.1088/0305-4470/34/35/315
[13]Horodecki, M.: Entanglement measures. Quantum Inf. Comput. 1, 3–26 (2001)
[14]Li, N., Luo, S.: Total versus quantum correlations in quantum states. Phys. Rev. A 76, 032327 (2007) · doi:10.1103/PhysRevA.76.032327
[15]Lindblad, G.: Entropy, information and quantum measurements. Commun. Math. Phys. 33, 305–322 (1973) · doi:10.1007/BF01646743
[16]Lindblad, G.: Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39, 111–119 (1974) · Zbl 0294.46052 · doi:10.1007/BF01608390
[17]Lindblad, G.: Quantum entropy and quantum measurements. In: Bendjaballah, C., et al.(eds.) Quantum Aspects of Optical Communications. Lecture Notes in Physics, vol. 378, pp. 71–80. Springer, Berlin (1991)
[18]Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
[19]Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2002) · Zbl 1255.81071 · doi:10.1103/PhysRevLett.88.017901
[20]Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (1998)
[21]Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555–563 (1935) · Zbl 02536794 · doi:10.1017/S0305004100013554
[22]Schumacher, B., Westmoreland, M.D.: Quantum mutual information and the one-time pad. Phys. Rev. A 74, 042305 (2006) · doi:10.1103/PhysRevA.74.042305
[23]Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)
[24]Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002) · Zbl 1205.81053 · doi:10.1103/RevModPhys.74.197
[25]Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978) · doi:10.1103/RevModPhys.50.221
[26]Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989) · doi:10.1103/PhysRevA.40.4277
[27]Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001)