zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A study on network design problems for multi-modal networks by probit-based stochastic user equilibrium. (English) Zbl 1170.90327
Summary: This paper develops a multi-modal transport network model considering various travel modes including railway, bus, auto, and walking. Travellers are assumed to choose their multi-modal routes so as to minimise their perceived disutilities of travel following the Probit Stochastic User Equilibrium (SUE) condition. Factors influencing the disutility of a multi-modal route include actual travel times, discomfort on transit systems, expected waiting times, fares, and constants specific to transport modes. The paper then deals with the multi-modal network design problem (NDP). The paper employs the method of sensitivity analysis to define linear approximation functions between the Probit SUE link flows and the design parameters, which are then used as constraints in the sub-problem of the NDP instead of the original SUE condition. Based on this reformulated NDP, an efficient algorithm for solving the problem is proposed in the paper. Two instances of this general NDP formulation are then presented in the paper: the optimal frequency design problem for public transport services (FDP), and the anti-freezing admixture dispersion problem (AADP).
MSC:
90B06Transportation, logistics
90B15Network models, stochastic (optimization)
References:
[1]Abdulaal M, LeBlanc LJ (1979) Continuous equilibrium network design models. Transp Res, Part B 13:19–32 · doi:10.1016/0191-2615(79)90004-3
[2]Bielli M, Caramia M, Carotenuto P (2002) Genetic algorithms in bus network optimization. Transp Res, Part C 10:19–34 · doi:10.1016/S0968-090X(00)00048-6
[3]Boyce D, Bar-Gera H (2004) Multiclass combined models for urban travel forecasting. Netw Spat Econ 4:115–124 · Zbl 1079.90017 · doi:10.1023/B:NETS.0000015659.39216.83
[4]Carey M (1994a) A model and strategy for train pathing with choice of lines, platforms and routes. Transp Res, Part B 28:333–353 · doi:10.1016/0191-2615(94)90033-7
[5]Carey M (1994b) Extending a train pathing model from one-way to two-way track. Transp Res, Part B 28:395–400 · doi:10.1016/0191-2615(94)90038-8
[6]Carey M, Carville S (2003) Scheduling and platforming trains at busy complex stations. Transp Res, Part A 37:195–224
[7]Ceder A (1987) Methods for creating bus timetables. Transp Res Part A 21:59–83 · doi:10.1016/0191-2607(87)90024-0
[8]Ceder A (2002) A step function for improving transit operations planning using fixed and variable scheduling. In: Taylor MAP (ed) Transportation and traffic theory (15th ISTTT). Elsevier, New York, pp 1–21
[9]Cepeda M, Cominetti R, Florian M (2006) A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria. Transp Res, Part B 40:437–459 · doi:10.1016/j.trb.2005.05.006
[10]Chiriqui C, Robillard P (1975) Common bus lines. Transp Sci 9:115–121 · doi:10.1287/trsc.9.2.115
[11]Clark SD, Watling DP (2002) Sensitivity analysis of the probit-based stochastic user equilibrium assignment model. Transp Res, Part B 36:617–635 · doi:10.1016/S0191-2615(01)00021-2
[12]Comminetti R, Correa J (2001) Common-lines and passenger assignment in congested transit networks. Transp Sci 35:250–267 · Zbl 1160.90328 · doi:10.1287/trsc.35.3.250.10154
[13]Connors RD, Sumalee A, Watling DP (2006) Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple user-classes. Transp Res Part B (in press)
[14]Constantin I, Florian M (1995) Optimizing frequencies in a transit network: a nonlinear bi-level programming approach. Int Trans Oper Res 2:149–164 · Zbl 0868.90037 · doi:10.1111/j.1475-3995.1995.tb00011.x
[15]De Cea J, Fernandez JE (1989) Transit assignment to minimal routes: An effecient new algorithm. Traff Eng Control 30–10, October
[16]De Cea J, Fernandez E (1993) Transit assignment for congested public transport system: an equilibrium model. Transp Sci 27:133–147 · Zbl 0788.90030 · doi:10.1287/trsc.27.2.133
[17]Fernandez E, De Cea J, Florian M, Cabrera E (1994) Network equilibrium models with combined modes. Transp Sci 28:182–192 · Zbl 0814.90024 · doi:10.1287/trsc.28.3.182
[18]Gao ZY, Sun H, Shan LL (2004) A continuous equilibrium network design model and algorithm for transit systems. Transp Res, Part B 38:235–250 · doi:10.1016/S0191-2615(03)00011-0
[19]Hamdouch Y, Marcotte P, Nguyen S (2004) Capacitated transit assignment with loading priorities. Math Program 101B:205–230
[20]Kamakura WA (1989) The estimation of multinomial probit models. A new calibration algorithm. Transp Sci 23:253–265 · Zbl 0712.62105 · doi:10.1287/trsc.23.4.253
[21]Lam WHK, Zhang YP (2000) Capacity-constrained traffic assignment in networks with residual queues. ASCE J Transp Eng 126:121–128 · doi:10.1061/(ASCE)0733-947X(2000)126:2(121)
[22]Lam WHK, Gao ZY, Chan KS, Yang H (1999) A stochastic user equilibrium assignment model for congested transit networks. Transp Res, Part B 33:351–368 · doi:10.1016/S0191-2615(98)00040-X
[23]Lo HK, Yip CW, Wan KH (2003) Modelling transfer and non-linear fare structure in multi-modal network. Transp Res, Part B 37:149–170 · doi:10.1016/S0191-2615(02)00005-X
[24]Nguyen S, Pallotino S (1988) Equilibrium traffic assignemnt for large scale transit networks. Eur J Oper Res 37:176–186 · Zbl 0649.90049 · doi:10.1016/0377-2217(88)90327-X
[25]Nielsen OA (2000) A stochastic transit assignment model considering difference in passenger utility functions. Transp Res, Part B 34:377–402 · doi:10.1016/S0191-2615(99)00029-6
[26]Sheffi Y (1985) Urban Transportation Networks. Prentice-Hall, New Jersey
[27]Shepherd SP, Sumalee A (2004) A genetic algorithm based approach to optimal toll level and location problems. Netw Spat Econ 4:161–179 · Zbl 1079.90082 · doi:10.1023/B:NETS.0000027771.13826.3a
[28]Spiess H, Florian M (1989) Optimal strategies: a new assignment model for transit network. Transp Res, Part B 23:83–102 · doi:10.1016/0191-2615(89)90034-9
[29]Sumalee A, Connors R, Watling DP (2005). Optimal toll design problem with improved behavioural equilibrium model: the case of Probit model. In: Hearn DW, Lawphongpanich S, Smith MJ (eds) Mathematical and computational models for congestion charging. Springer, Berlin Heidelberg New York
[30]Tobin RL, Friesz TL (1988) Sensitivity analysis for equilibrium network flow. Transp Sci 22:242–250 · Zbl 0665.90031 · doi:10.1287/trsc.22.4.242
[31]Wan QK, Lo HK (2003) A mixed integer formulation for multiple-route transit network design. J Math Model Algorithms 2:299–308 · Zbl 1048.90035 · doi:10.1023/B:JMMA.0000020425.99217.cd
[32]Wirasinghe SC, Liu G (1995) Optimal schedule design for a transit route with one intermediate time point. Transp Plan Technol 19:121–145 · doi:10.1080/03081069508717563
[33]Wu JH, Florian M, Marcotte P (1994) Transit equilibrium assignment: A model and solution algorithms. Trans Sci 28:193–203 · Zbl 0814.90025 · doi:10.1287/trsc.28.3.193
[34]Yang H, Bell MGH (1997) Traffic restraint, road pricing and network equilibrium. Transp Res, Part B 31:303–314 · doi:10.1016/S0191-2615(96)00030-6
[35]Zwaneveld P, Kroon JL, Romeijn HE, Salomon M (1996) Routing trains through railway stations: model formulation and algorithms. Transp Sci 30:181–194 · Zbl 0884.90079 · doi:10.1287/trsc.30.3.181