zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. (English) Zbl 1171.26305
The author gives a short background on the definition of the modified Riemann-Liouville derivative for non-differentiable functions and the related fractional Taylor’s series, he displays some formulae involving fractional derivatives. Also some formulae involving integrals with respect to (dx) α and the Lagrangian technique of constant variation for solving fractional differential equations are presented.

MSC:
26A33Fractional derivatives and integrals (real functions)
References:
[1]Al-Akaidi, M.: Fractal speech processing, (2004)
[2]Campos, L. Mc.: On a concept of derivative of complex order with applications to special functions, IMA J. Appl. math. 33, 109-133 (1984) · Zbl 0565.30034 · doi:10.1093/imamat/33.2.109
[3]Campos, L. M. C.: Fractional calculus of analytic and branched functions, Recent advances in fractional calculus (1993) · Zbl 0789.30030
[4]Caputo, M.: Linear model of dissipation whose Q is almost frequency dependent II, Geophys. J. R. ast. Soc. 13, 529-539 (1967)
[5]Djrbashian, M. M.; Nersesian, A. B.: Fractional derivative and the Cauchy problem for differential equations of fractional order, Izv. acad. Nauk armjanskoi SSR 3, No. 1, 3-29 (1968)
[6]Jumarie, G.: Stochastic differential equations with fractional Brownian motion input, Int. J. Syst. sc. 24, No. 6, 1113-1132 (1993) · Zbl 0771.60043 · doi:10.1080/00207729308949547
[7]Jumarie, G.: On the representation of fractional Brownian motion as an integral with respect to (dt)α, Appl. math. Lett. 18, 739-748 (2005) · Zbl 1082.60029 · doi:10.1016/j.aml.2004.05.014
[8]Jumarie, G.: On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion, Appl. math. Lett. 18, 817-826 (2005) · Zbl 1075.60068 · doi:10.1016/j.aml.2004.09.012
[9]Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. math. Appl. 51, 1367-1376 (2006) · Zbl 1137.65001 · doi:10.1016/j.camwa.2006.02.001
[10]Jumarie, G.: New stochastic fractional models for malthusian growth, the Poissonian birth prodess and optimal management of populations, Math. comput. Modelling 44, 231-254 (2006) · Zbl 1130.92043 · doi:10.1016/j.mcm.2005.10.003
[11]Kober, H.: On fractional integrals and derivatives, Quart. J. Math. Oxford 11, 193-215 (1940) · Zbl 0025.18502
[12]Kolwankar, Km.; Gangal, Ad.: Holder exponents of irregular signals and local fractional derivatives, Pramana J. Phys. 48, 49-68 (1997)
[13]Kolwankar, Km.; Gangal, Ad.: Local fractional Fokker-Planck equation, Phys. rev. Lett. 80, 214-217 (1998) · Zbl 0945.82005 · doi:10.1103/PhysRevLett.80.214
[14]Letnikov, A. V.: Theory of differentiation of fractional order, Math. sb. 3, 1-7 (1868)
[15]Liouville, J.: Sur le calcul des differentielles à indices quelconques, J. ecole polytechnique 13, 71 (1832)
[16]Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1933)
[17]Nishimoto, K.: Fractional calculus, (1989) · Zbl 0707.26009
[18]Oldham, K. B.; Spanier, J.: The fractional calculus. Theory and application of differentiation and integration to arbitrary order, (1974)
[19]Ortigueira, M. D.: Introduction to fractional signal processing. Part I: Continuous time systems, IEE proc. Vision image signal process. 1, 62-70 (2000)
[20]Osler, T. J.: Taylor’s series generalized for fractional derivatives and applications, SIAM J. Math. anal. 2, No. 1, 37-47 (1971) · Zbl 0215.12101 · doi:10.1137/0502004
[21]Oustaloup, A.: La derivation non entiere: theorie, synthese et applications, (1995) · Zbl 0864.93004
[22]Podlubny, I.: Fractional differential equations, (1999)
[23]Ross, B.: Fractional calculus and its applications, Lecture notes in mathematics 457 (1974)
[24]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives. Theory and applications, (1987)