zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Boundedness and stability of nonautonomous cellular neural networks with reaction-diffusion terms. (English) Zbl 1171.35326
Summary: We study a class of nonautonomous cellular neural networks with reaction-diffusion terms. By employing the method of variation parameter, applying inequality technique and introducing a lot of real parameters, we present some sufficient conditions ensuring the boundedness and globally exponential stability of the solutions for nonautonomous cellular neural networks with reaction-diffusion terms. The results obtained extend and improve the earlier publications. Finally, three examples with their numerical simulations are provided to show the correctness of our analysis.
MSC:
35B35Stability of solutions of PDE
35K50Systems of parabolic equations, boundary value problems (MSC2000)
35K55Nonlinear parabolic equations
35K57Reaction-diffusion equations
References:
[1]Cao, J.; Huang, D.; Qu, Y.: Global robust stability of delayed recurrent neural networks, Chaos, sol. Frac. 23, No. 1, 221-229 (2005) · Zbl 1075.68070 · doi:10.1016/j.chaos.2004.04.002
[2]Chua, L.; Yang, L.: Cellular neural networks: theory, IEEE trans. Circuits syst. 35, 1257-1272 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[3]Chua, L.; Yang, L.: Cellular neural networks: applications, IEEE trans. Circuits syst. 35, 1273-1290 (1988)
[4]Gopaldamy, K.: Stability of artificial neural networks with impulses, Appl. math. Comput. 154, No. 3, 783-813 (2004) · Zbl 1058.34008 · doi:10.1016/S0096-3003(03)00750-1
[5]Huang, C.; Huang, L.; Yuan, Z.: Global stability analysis of a class of delayed cellular neural networks, Math. comput. Simulat. 70, No. 3, 133-148 (2005) · Zbl 1094.34052 · doi:10.1016/j.matcom.2005.06.001
[6]Liang, J.; Cao, J.: Global exponential stability of reaction-diffusion recurrent neural networks with time-varying delays, Phys. lett. A 314, No. 5/6, 434-442 (2003) · Zbl 1052.82023 · doi:10.1016/S0375-9601(03)00945-9
[7]Lou, X.; Cui, B.: Boundedness and exponential stability for nonautonomous cellular neural networks with reaction-diffusion terms, Chaos, sol. Frac. 33, No. 2, 653-662 (2007) · Zbl 1133.35386 · doi:10.1016/j.chaos.2006.01.044
[8]Lu, W.; Guo, Y.; Xu, S.: Global asymptotic stability analysis for cellular neural networks with time delays, Chaos, sol. Frac. 29, No. 2, 349-353 (2006) · Zbl 1095.92002 · doi:10.1016/j.chaos.2005.08.046
[9]Mohamad, S.; Gopaldamy, K.: Exponential stability of continuous-time and discrete-time cellular neural networks with delays, Appl. math. Comput. 135, No. 1, 17-38 (2003) · Zbl 1030.34072 · doi:10.1016/S0096-3003(01)00299-5
[10]Sun, C.; Feng, C.: Exponential periodicity and stability of delayed neural networks, Math. comput. Simulat. 66, No. 6, 469-478 (2004) · Zbl 1057.34097 · doi:10.1016/j.matcom.2004.03.001
[11]Wang, L.; Gao, Y.: Global exponential robust stability of reaction-diffusion interval neural networks with time-varying delays, Phys. lett. A 350, No. 5 – 6, 342-348 (2006) · Zbl 1195.35179 · doi:10.1016/j.physleta.2005.10.031
[12]Zhao, H.; Cao, J.: New conditions for global exponential stability of cellular neural networks with delays, Neural networks 18, No. 10, 1332-1340 (2005) · Zbl 1083.68108 · doi:10.1016/j.neunet.2004.11.010
[13]Zhao, H.: Exponential stability and periodic oscillatory of bi-directional memory neural networks involving delays, Neurocomputing 69, No. 4 – 6, 424-428 (2006)
[14]Zhou, D.; Zhang, L.; Cao, J.: On global exponential stability of cellular neural networks with Lipschitz-continuous activation function and variable delays, Appl. math. Comput. 151, No. 2, 379-392 (2004) · Zbl 1077.68092 · doi:10.1016/S0096-3003(03)00347-3