zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multi-kernel regularized classifiers. (English) Zbl 1171.65043

Summary: A family of classification algorithms generated from Tikhonov regularization schemes are considered. They involve multi-kernel spaces and general convex loss functions. Our main purpose is to provide satisfactory estimates for the excess misclassification error of these multi-kernel regularized classifiers when the loss functions achieve the zero value. The error analysis consists of two parts: regularization error and sample error. Allowing multi-kernels in the algorithm improves the regularization error and approximation error, which is one advantage of the multi-kernel setting.

For a general loss function, we show how to bound the regularization error by the approximation in some weighted L q spaces. For the sample error, we use a projection operator. The projection in connection with the decay of the regularization error enables us to improve convergence rates in the literature even for the one-kernel schemes and special loss functions: least-square loss and hinge loss for support vector machine soft margin classifiers. Existence of the optimization problem for the regularization scheme associated with multi-kernels is verified when the kernel functions are continuous with respect to the index set. Concrete examples, including Gaussian kernels with flexible variances and probability distributions with some noise conditions, are used to illustrate the general theory.

MSC:
65J20Improperly posed problems; regularization (numerical methods in abstract spaces)