zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Closed Newton-Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. (English) Zbl 1171.65449
Summary: The connection between closed Newton-Cotes, trigonometrically-fitted differential methods and symplectic integrators is studied in this paper. Several one-step symplectic integrators have been obtained based on symplectic geometry, as is shown in the literature. However, the study of multi-step symplectic integrators is very limited. The well-known open Newton-Cotes differential methods are presented as multilayer symplectic integrators by W. Zhu, X. Zhao and Y. Tang [J. Chem. Phys. 104, 2275 (1996)]. The construction of multi-step symplectic integrators based on the open Newton-Cotes integration methods is investigated by J.C. Chiou and S.D. Wu [J. Chem. Physics 107, 6894 (1997)]. The closed Newton-Cotes formulae are studied in this paper and presented as symplectic multilayer structures. We also develop trigonometrically-fitted symplectic methods which are based on the closed Newton-Cotes formulae. We apply the symplectic schemes in order to solve Hamilton’s equations of motion which are linear in position and momentum. We observe that the Hamiltonian energy of the system remains almost constant as the integration proceeds. Finally we apply the new developed methods to an orbital problem in order to show the efficiency of this new methodology.
MSC:
65P10Numerical methods for Hamiltonian systems including symplectic integrators
70H05Hamilton’s equations
References:
[1]Sanz-Serna, J. M.; Calvo, M. P.: Numerical Hamiltonian problem, (1994)
[2]Zhu, W.; Zhao, X.; Tang, Y.: Journal of chem. Phys., Journal of chem. Phys. 104, 2275 (1996)
[3]Chiou, J. C.; Wu, S. D.: Journal of chemical physics, Journal of chemical physics 107, 6894 (1997)
[4]Anastassi, Z. A.; Simos, T. E.: New astronomy, New astronomy 10, No. 4, 301 (2005)
[5]Anastassi, Z. A.; Simos, T. E.: New astronomy, New astronomy 10, No. 1, 31 (2004)
[6]Simos, T. E.: Computing letters, Computing letters 1, No. 1, 37 (2005)
[7]Psihoyios, G.: Computing letters, Computing letters 2, No. 1–2, 51 (2006)
[8]Amodio, P.; Gladwell, I.; Romanazzi, G.: Jnaiam, Jnaiam 1, No. 1, 5 (2006)
[9]Capper, S. D.; Cash, J. R.; Moore, D. R.: Jnaiam, Jnaiam 1, No. 1, 13 (2006)
[10]Psihoyios, G.; Simos, T. E.: New astronomy, New astronomy 8, No. 7, 679 (2003)
[11]Simos, T. E.: Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems, Chemical modelling: applications and theory 170 (2002)
[12]Simos, T. E.: New astronomy, New astronomy 9, No. 6, 409 (2004)
[13]Simos, T. E.: New astronomy, New astronomy 9, No. 1, 59 (2004)
[14]Simos, T. E.: New astronomy, New astronomy 8, No. 5, 391 (2003)
[15]Simos, T. E.: New astronomy, New astronomy 7, No. 1, 1 (2002)
[16]Simos, T. E.: International journal of modern physics C, International journal of modern physics C 11, 79 (2000)
[17]Simos, T. E.; Williams, P. S.: International journal of modern physics C, International journal of modern physics C 10, 839 (1999)
[18]Kierzenka, J.; Shampine, L. F.: J. numer. Anal. indust. Appl. math, J. numer. Anal. indust. Appl. math 3, 27-41 (2008)
[19]Corless, R. M.; Shakoori, A.; Aruliah, D. A.; Gonzalez-Vega, L.: J. numer. Anal. indust. Appl. math, J. numer. Anal. indust. Appl. math 3, 1-16 (2008)
[20]Simos, T. E.: International journal of modern physics C, International journal of modern physics C 7, 825 (1996)
[21]Stiefel, E.; Bettis, D. G.: Numer. math., Numer. math. 13, 154 (1969)
[22]Nedialkov, N. S.; Pryce, J. D.: J. numer. Anal. indust. Appl. math, J. numer. Anal. indust. Appl. math 3, 61-80 (2008)
[23]Sofroniou, M.; Spaletta, G.: J. numer. Anal. indust. Appl. math, J. numer. Anal. indust. Appl. math 3, 105-121 (2008)
[24]Corwin, S. P.; Thompson, S.; White, S. M.: J. numer. Anal. indust. Appl. math, J. numer. Anal. indust. Appl. math 3, 139-149 (2008)
[25]Quinlan, Gerald D.; Tremaine, Scott: The astronomical journal, The astronomical journal 100, No. 5, 1694 (1990)
[26]Simos, T. E.; Vigo-Aguiar, J.: Computer physics communications, Computer physics communications 140, No. 3, 358 (2001)
[27]T.E. Simos, Technical Report of the Laboratory of Computational Sciences and Engineering No 1/2009, Tripolis, Greece, 2009
[28]Simos, T. E.: Computer physics communications, Computer physics communications 178, 199 (2008)
[29]Hairer, E.; Norsett, S. P.; Wanner, G.: Solving ordinary differential equations I, (1993)