zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A noncommutative Bohnenblust-Spitzer identity for Rota-Baxter algebras solves Bogoliubov’s recursion. (English) Zbl 1171.81412
Summary: The Bogoliubov recursion is a particular procedure appearing in the process of renormalization in perturbative quantum field theory. It provides convergent expressions for otherwise divergent integrals. We develop here a theory of functional identities for noncommutative Rota-Baxter algebras which is shown to encode, among others, this process in the context of Connes-Kreimer’s Hopf algebra of renormalization. Our results generalize the seminal Cartier-Rota theory of classical Spitzer-type identities for commutative Rota-Baxter algebras. In the classical, commutative, case these identities can be understood as deriving from the theory of symmetric functions. Here we show that an analogous property holds for noncommutative Rota-Baxter algebras. That is, we show that functional identities in the noncommutative setting can be derived from the theory of noncommutative symmetric functions. Lie idempotents, and particularly the Dynkin idempotent, play a crucial role in the process. Their action on the pro-unipotent groups such as those of perturbative renormalization is described in detail along the way.
81T15Perturbative methods of renormalization (quantum theory)
05E05Symmetric functions and generalizations
16W30Hopf algebras (assoc. rings and algebras) (MSC2000)
17D25Lie-admissible algebras
81T18Feynman diagrams
81T17Renormalization group methods (quantum theory)
22E70Applications of Lie groups to physics; explicit representations