zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and stability of solutions for generalized strong vector quasi-equilibrium problem. (English) Zbl 1171.90521
Summary: We study the generalized strong vector quasi-equilibrium problem without assuming that the dual of the ordering cone has a weak * compact base. We establish an existence theorem of solutions for the generalized strong vector quasi-equilibrium problem by using Kakutani-Fan-Glicksberg fixed point theorem and discuss the closedness of the strong solution set. Moreover, we also derive a stability result for this problem.

MSC:
90C29Multi-objective programming; goal programming
90C47Minimax problems
References:
[1]Ansari, Q. H.; Oettli, W.; Schiager, D.: A generalization of vector equilibrium, Math. methods oper. Res. 46, 147-152 (1997) · Zbl 0889.90155 · doi:10.1007/BF01217687
[2]Ansari, Q. H.; Yao, J. C.: An existence result for the generalized vector equilibrium, Appl. math. Lett. 12, 53-56 (1999) · Zbl 1014.49008 · doi:10.1016/S0893-9659(99)00121-4
[3]Ansari, Q. H.; Schaible, S.; Yao, J. C.: System of vector equilibrium problems and its applications, J. optim. Theory appl. 107, 547-557 (2000) · Zbl 0972.49009 · doi:10.1023/A:1026495115191
[4]Ansari, Q. H.; Chan, W. K.; Yang, X. Q.: The system of vector quasi-equilibrium problems with application, J. global optim. 29, 45-57 (2004) · Zbl 1073.90032 · doi:10.1023/B:JOGO.0000035018.46514.ca
[5]Aubin, J. P.; Ekeland, I.: Applied nonlinear analysis, (1984) · Zbl 0641.47066
[6]Bianchi, M.; Hadjisvvas, N.; Schaibles, S.: Vector equilibrium problems with generalized monotone bifunctions, J. optim. Theory appl. 92, 527-542 (1997) · Zbl 0878.49007 · doi:10.1023/A:1022603406244
[7]Blum, E.; Wettli, W.: From optimization and variational inequalities to equilibrium problems, Math. student 63, 123-1456 (1994) · Zbl 0888.49007
[8]Chen, G. Y.: Existence of solutions for a vector variational inequality: an extension of the hartman–stampacchia theorem, J. optim. Theory appl. 74, 445-456 (1992) · Zbl 0795.49010 · doi:10.1007/BF00940320
[9]Chen, G. Y.; Huang, X. X.; Yang, X. Q.: Vector optimization: set-valued and variational analysis, (2005)
[10]Chen, G. Y.; Yang, X. Q.: The vector complementary problem and its equivalences with the weak minimal element in ordered Banach spaces, J. math. Anal. appl. 153, 136-158 (1990) · Zbl 0712.90083 · doi:10.1016/0022-247X(90)90270-P
[11]Chen, G. Y.; Yang, X. Q.; Yu, H.: A nonlinear scalarization function and generalized quasi-vector equilibrium problem, J. global optim. 32, 451-466 (2005) · Zbl 1130.90413 · doi:10.1007/s10898-003-2683-2
[12]Fang, Y. P.; Huang, N. J.; Kim, J. K.: Existence results for systems of vector equilibrium problem, J. global optim. 35, 71-83 (2006) · Zbl 1099.49006 · doi:10.1007/s10898-005-1654-1
[13]Fu, J. Y.: Generalized vector quasi-equilibrium problems, Math. methods oper. Res. 52, 57-64 (2000) · Zbl 1054.90068 · doi:10.1007/s001860000058
[14], Vector variational inequilities and vector equilibria: mathematical theories (2000)
[15]Gong, X. H.: Strong vector equilibrium problem, J. global optim. 36, 339-349 (2006) · Zbl 1120.90055 · doi:10.1007/s10898-006-9012-5
[16]Gong, X. H.: Efficiency and Henig efficiency for vector equilibrium problem, J. optim. Theory appl. 108, 139-154 (2001) · Zbl 1033.90119 · doi:10.1023/A:1026418122905
[17]Holmes, R. B.: Geometric functional analysis and its application, (1975)
[18]S.H. Hou, X.H. Gong, X.M. Yang, Existence and stability of solutions for generalized strong vector equilibrium problems with trifunctions, J. Optim. Theory Appl. (in press) · Zbl 1171.90521 · doi:10.1016/j.mcm.2007.04.013
[19]Huang, N. J.; Fang, Y. P.: Strong vector F-complementary problem and least element problem of feasible set, Nonlinear anal. TMA 61, 901-918 (2005) · Zbl 1135.90411 · doi:10.1016/j.na.2005.01.021
[20]Huang, N. J.; Fang, Y. P.: On vector variational inequalities in reflexive Banach space, J. global optim. 32, 495-505 (2005) · Zbl 1097.49009 · doi:10.1007/s10898-003-2686-z
[21]Huang, N. J.; Li, J.; Thompson, H. B.: Stability for parametric implicit vector equilibrium problems, Math. comput. Modelling 43, 1267-1274 (2006) · Zbl 1187.90286 · doi:10.1016/j.mcm.2005.06.010
[22]Jameson, G.: Order linear spaces, Lector notes in math 141 (1970) · Zbl 0196.13401
[23]Li, S. J.; Teo, K. L.; Yang, X. Q.: Generalized vector quasi-equilibrium problem, Math. methods oper. Res. 61, 385-397 (2005) · Zbl 1114.90114 · doi:10.1007/s001860400412
[24]Luc, D. T.: Theory of vector optimization, Lecture notes in economics and mathematics systems 319 (1989)
[25]Peng, J. W.; Lee, J. H. W.; Yang, X. M.: On systems of generalized vector quasi-equilibrium problem with set-valued maps, J. global optim. 35, 139-158 (2006) · Zbl 1112.49019 · doi:10.1007/s10898-006-9004-5
[26]Tan, K. K.; Yu, J.; Yuan, X. Z.: Existence theorems for saddle points of vector-valued maps, J. optim. Theory appl. 89, 734-747 (1996) · Zbl 0849.49009 · doi:10.1007/BF02275357
[27]Yang, X. Q.: Vector complementarity and minimal element problem, J. optim. Theory appl. 77, 483-495 (1993) · Zbl 0796.49014 · doi:10.1007/BF00940446
[28]Yu, J.: Essential weak efficient solution in multiobjective optimization problems, J. math. Anal. appl. 166, 230-235 (1992) · Zbl 0753.90058 · doi:10.1016/0022-247X(92)90338-E