zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Quenching rates for heat equations with coupled singular nonlinear boundary flux. (English) Zbl 1172.35433
The authors study quenching phenomena for heat equations with coupled singular nonlinear boundary fluxes and positive initial data. They give a criterion to identify the simultaneous and non-simultaneous quenching and obtained three kinds of simultaneous quenching rates for different nonlinear exponent regions and appropriate initial data.
MSC:
35K60Nonlinear initial value problems for linear parabolic equations
35K55Nonlinear parabolic equations
35B40Asymptotic behavior of solutions of PDE
35B05Oscillation, zeros of solutions, mean value theorems, etc. (PDE)
References:
[1]Kawarada H. On solutions of initial boundary value problem for u t = u xx +1/(1-u). RIMS Kyoto Univ, 10: 729–736 (1975) · Zbl 0306.35059 · doi:10.2977/prims/1195191889
[2]Chan C Y. New results in quenching. In: Proc 1st World Congress of Nonlinear Analysis. Berlin: Walter de Gruyter, 1996
[3]Deng K, Xu M X. Quenching for a nonlinear diffusion equation with a singular boundary conditions. Z Angew Math Phys, 50: 574–584 (1999) · Zbl 0929.35012 · doi:10.1007/s000330050167
[4]Deng K, Xu M X. On solutions of a singular diffusion equation. Nonlinear Anal, 41: 489–500 (2000) · Zbl 0949.35075 · doi:10.1016/S0362-546X(98)00292-2
[5]Levine H A. Advances in quenching. In: Proc Internat Conf on Reaction-Diffusion Equations and Their Equilibrium States. Boston: Birkhäuser, 1992
[6]Levine H A, Lieberman G M. Quenching of solutions of parabolic equations with nonlinear boundary conditions in several dimensions. J Reine Angew Math, 345: 23–38 (1983)
[7]Fila M, Levine H A. Quenching on the boundary. Nonlinear Anal, 21: 795–802 (1993) · Zbl 0809.35043 · doi:10.1016/0362-546X(93)90124-B
[8]de Pablo A, Quirós F, Rossi J D. Nonsimultaneous quenching. Appl Math Lett, 15: 265–269 (2002) · Zbl 1019.35036 · doi:10.1016/S0893-9659(01)00128-8
[9]Ferreira R, de Pablo A, Quirós F, et al. Nonsimultaneous quenching in a system of heat equations coupled at the boundary. Z Angew Math Phys, 57: 1–9 (2006) · Zbl 1101.35008 · doi:10.1007/s00033-005-0003-z
[10]Chadam J M, Peirce A, Yin H M. The blowup property of solutions to some diffusion equations with localized nonlinear reactions. J Math Anal Appl, 169: 313–328 (1992) · Zbl 0792.35095 · doi:10.1016/0022-247X(92)90081-N