zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The numerical solution of the second Painlevé equation. (English) Zbl 1172.65037

Summary: The Painlevé equations were discovered by Painlevé, Gambier and their colleagues during studying a nonlinear seccond-order ordinary differential equation. The six equations which bear Painlevé’s name are irreducible in the sense that their general solutions cannot be expressed in terms of known functions. Painlevé has derived these equations on the sole requirement that their solutions should be free from movable singularities. Many situations in mathematical physics reduce ultimately to Painlevé equations: applications including statistical mechanics, plasma physics, nonlinear waves, quantum gravity, quantum field theory, general relativity, nonlinear optics, and fiber optics. This fact has caused a significant interest to the study of these equations in recent years.

In this study, the solution of the second Painlevé equation is investigated by means of Adomian decomposition method, homotopy perturbation method, and Legendre tau method. Then a numerical evaluation and comparison with the results obtained by the method of continuous analytic continuation are included.

MSC:
65L05Initial value problems for ODE (numerical methods)
34M55Painlevé and other special equations; classification, hierarchies
35Q53KdV-like (Korteweg-de Vries) equations
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies