zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A fully discrete stabilized finite element method for the time-dependent Navier-Stokes equations. (English) Zbl 1172.76027
Summary: We consider a fully discrete stabilized finite element method based on two local Gauss integrations for two-dimensional time-dependent Navier-Stokes equations. It focuses on the lowest equal-order velocity-pressure pairs. Unlike the other stabilized method, the present approach does not require specification of a stabilization parameter or calculation of higher-order derivatives, and always leads to a symmetric linear system. The Euler semi-implicit scheme is used for the time discretization. It is shown that the proposed fully discrete stabilized finite element method results in the optimal order bounds for velocity and pressure.
MSC:
76M10Finite element methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)
76M20Finite difference methods (fluid mechanics)
65M15Error bounds (IVP of PDE)
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
References:
[1]Girault, V.; Raviart, P. A.: Finite element method for the Navier – Stokes equations: theory and algorithms, (1986)
[2]Hughes, T. J. R.; Franca, L. P.: A new finite element formulation for computational fluids dynamics: V. Circumventing the bavuska – brezzi condition: a stable ptrov – Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. Mech. eng. 62, 85-99 (1987) · Zbl 0622.76077 · doi:10.1016/0045-7825(86)90025-3
[3]Codina, R.; Blasco, J.: Stabilized finite element method for the transient Navier – Stokes equations based on a pressure gradient projection, Comput. methods appl. Mech. eng. 182, 277-300 (2000) · Zbl 0986.76037 · doi:10.1016/S0045-7825(99)00194-2
[4]Douglas, J.; Wang, J.: An absolutely stabilized finite element method for the Stokes problem, Math. comput. 52, 495-508 (1989) · Zbl 0669.76051 · doi:10.2307/2008478
[5]Franca, L.; Frey, F.: Stabilized finite element methods:II. The incompressible Navier – Stokes equations, Comput. methods appl. Mech. eng. 99, 209-233 (1992) · Zbl 0765.76048 · doi:10.1016/0045-7825(92)90041-H
[6]Barth, T.; Bochev, P.; Gunzburger, M.; Shahid, J.: A taxonomy of consistently stabilized finite element methods for the Stokes problem, SIAM J. Sci. comput. 25, 1585-1607 (2004) · Zbl 1133.76307 · doi:10.1137/S1064827502407718
[7]Codina, R.; Blasco, J.: A finite element formulation for the Stokes problem allowing equal-pressure interpolation, Comput. methods appl. Mech. eng. 143, 373-391 (1997) · Zbl 0893.76040 · doi:10.1016/S0045-7825(96)01154-1
[8]Codina, R.; Blasco, J.: Analysis of pressure-stabilized finite element approximation of the stationary Navier – Stokes equations, Numer. math. 87, 59-81 (2000) · Zbl 0988.76049 · doi:10.1007/s002110000174
[9]Bochev, P. B.; Dohrmann, C. R.; Gunzburger, M. D.: Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. anal. 44, 82-101 (2006) · Zbl 1145.76015 · doi:10.1137/S0036142905444482
[10]Dohrmann, C. R.; Bochev, P. B.: A stabilized finite element method for the Stokes problem based on polynomial pressure projections, Int. J. Numer. methods fluids 46, 183-201 (2004) · Zbl 1060.76569 · doi:10.1002/fld.752
[11]Barrenechca, G. R.; Blasco, J.: Pressure stabilization of finite element approximations of time-dependent incompressible flow problems, Comput. methods appl. Mech. eng. 197, 219-231 (2007) · Zbl 1169.76389 · doi:10.1016/j.cma.2007.07.027
[12]Blasco, L.; Codina, R.: Space and time estimates for a first order pressure stabilized finite element method for the incompressible Navier – Stokes equations, Appl. numer. Math. 38, 475-497 (2001) · Zbl 1011.76041 · doi:10.1016/S0168-9274(01)00048-4
[13]Li, J.; He, Y.; Chen, Z.: A new stabilized finite element method for the transient Navier – Stokes equations, Comput. methods 197, 22-35 (2007) · Zbl 1169.76392 · doi:10.1016/j.cma.2007.06.029
[14]Heywood, J. G.; Rannacher, R.: Finite element approximation of the non-stationary Navier – Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. anal. 19, 275-311 (1982) · Zbl 0487.76035 · doi:10.1137/0719018
[15]Ciarlet, P. G.: The finite element method for elliptic problems, (1978)
[16]Bramble, J. H.; Xu, J.: Some estimates for a weighted L2 projection, Math. comput. 56, 463-576 (1991)
[17]Temam, R.: Navier-Stokes equations, theory and numerical analysis, (1984)
[18]Hill, J. H.; Süli, E.: Approximation of the global attractors for the incompressible Navier – Stokes equations, IMA J. Numer. anal. 20, 633-667 (2000) · Zbl 0982.76022 · doi:10.1093/imanum/20.4.633
[19]He, Y.: A fully discrete stabilized finite-element method for the time-dependent Navier – Stokes problem, IMA J. Numer. anal. 23, 665-691 (2003) · Zbl 1135.76331 · doi:10.1093/imanum/23.4.665
[20]Heywood, J. G.; Rannacher, R.: Finite-element approximation of the nonstationary Navier – Stokes problem part IV: Error analysis for second-order time discretization, SIAM J. Numer. anal. 27, 353-384 (1990) · Zbl 0694.76014 · doi:10.1137/0727022