zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics of a two-species Lotka-Volterra competition system in a polluted environment with pulse toxicant input. (English) Zbl 1172.92036
Summary: In most models of population dynamics in a polluted environment, the emission of toxicants is generally considered to be continuous, but it is often the case that toxicants are emitted in regular pulses. This paper deals with the effects of pulse toxicants inputs with constant rate on two-species Lotka-Volterra competition systems in a polluted environment. The thresholds between persistence and extinction of each population are obtained. Moreover, our results indicate that the release amount of toxicants and the pulse period will affect the fate of each population. Finally, the results are verified through computer simulations.
37N25Dynamical systems in biology
[1]Laurent, H.: Environmental pollution, (1977)
[2]De Luna, J. T.: Effects of toxicants on populations: a qualitative approach. Resource-consumer-toxicant models, Ecol. model. 35, 249-273 (1987)
[3]Debasis, M.: Persistence and global stability of population in a polluted environment with delay, J. biol. Syst. 10, 225-232 (2002) · Zbl 1099.92074 · doi:10.1142/S021833900200055X
[4]Dubey, B.: Modelling the interaction of two biological species in a polluted environment, J. math. Anal. appl. 246, 58-79 (2000) · Zbl 0952.92030 · doi:10.1006/jmaa.2000.6741
[5]Freedman, H. I.; Shukla, T. B.: Models for the effect of toxicant in single-species and predator-prey systems, J. math. Biol. 30, 15-30 (1991) · Zbl 0825.92125 · doi:10.1007/BF00168004
[6]Hallam, T. G.; Clark, C. E.; Lassiter, R. R.: Effects of toxicants on populations: a qualitative approach. I. equilibrium environment exposure, Ecol. model. 18, 291-304 (1984) · Zbl 0548.92018
[7]Hallam, T. G.; Clark, C. E.; Jordan, G. S.: Effects of toxicants on populations: a qualitative approach. II. first order kinetics, J. math. Biol. 18, 25-37 (1983) · Zbl 0548.92019 · doi:10.1007/BF00275908
[8]Hallam, T. G.; De Luna, J. L.: Effects of toxicants on populations: a qualitative approach. III. environment and food chain pathways, J. theor. Biol. 109, 411-429 (1984)
[9]Shukla, J. B.; Dubey, B.: Simultaneous effect of two toxicants on biological species: a mathematical model, J. biol. Syst. 4, 109-130 (1996)
[10]Xiao, Y. N.; Chen, L. S.: Effects of toxicants on a stage-structured population growth model, Appl. math. Comput. 123, 63-73 (2001) · Zbl 1017.92044 · doi:10.1016/S0096-3003(00)00057-6
[11]D.D. Bainov, P.S. Simeonov, Impulsive differential equations: periodic solutions and applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, 1993.
[12]Lakshmikantham, V.; Bainov, D.; Simeonov, P.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[13]Gao, S. J.; Chen, L. S.; Nieto, J. J.; Torres, A.: Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine 24, 6037-6045 (2006)
[14]Zhang, H.; Georgescu, P.; Chen, L. S.: An impulsive predator-prey system with beddington – deangelis functional response and time delay, Int. J. Biomath. 1, No. 1, 1-17 (2008) · Zbl 1155.92045 · doi:10.1142/S1793524508000072
[15]Liu, B.; Chen, L. S.: The periodic competing Lotka – Volterra model with impulsive effect, Math. med. Boil. 21, 129-145 (2004) · Zbl 1055.92056 · doi:10.1093/imammb/21.2.129
[16]Liu, B.; Chen, L. S.: Dynamic complexity in Lotka – Volterra predator-prey system concerning impulsive control strategy, Int. J. Bifur. chaos appl. Sci. eng. 15, 517-531 (2005) · Zbl 1080.34026 · doi:10.1142/S0218127405012338
[17]Liu, B.; Zhang, Y. J.; Chen, L. S.: Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control, Chaos solitons fract. 22, 123-134 (2004) · Zbl 1058.92047 · doi:10.1016/j.chaos.2003.12.060
[18]Meng, X. Z.; Chen, L. S.: Permanence and global stability in an impulsive Lotka – Volterra n-species competitive system with both discrete delays and continuous delays, Int. J. Biomath. 1, No. 2, 179-196 (2008) · Zbl 1155.92356 · doi:10.1142/S1793524508000151
[19]X.Z. Meng, L.S. Chen, H.D. Chen, Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination, Appl. Math. Comput. 186, 516 – 529. · Zbl 1111.92049 · doi:10.1016/j.amc.2006.07.124
[20]Meng, X. Z.; Chen, L. S.; Li, Q. X.: The dynamics of an impulsive delay predator-prey model with variable coefficients, Appl. math. Comput. 198, 361-374 (2008) · Zbl 1133.92029 · doi:10.1016/j.amc.2007.08.075
[21]Jin, Z.; Haque, M.; Liu, Q. X.: Pulse vaccination in the periodic infection rate SIR epidemic model, Int. J. Biomath. 1, No. 4, 409-432 (2008) · Zbl 1156.92028 · doi:10.1142/S1793524508000370
[22]Xiong, Z. L.; Xue, Y.; Li, S. Y.: A food chain system with Holling-IV functional responses and impulsive effect, Int. J. Biomath. 1, No. 3, 361-375 (2008) · Zbl 1155.92043 · doi:10.1142/S1793524508000308
[23]Song, X. Y.; Li, Y. F.: Dynamic complexities of a Holling II two-prey one-predator system with impulsive effect, Chaos solitons fract. 33, 463-478 (2007) · Zbl 1136.34046 · doi:10.1016/j.chaos.2006.01.019
[24]Tang, S. Y.; Chen, L. S.: Density-dependent birth rate, birth pulses and their population dynamic consequences, J. math. Biol. 44, 185-199 (2002) · Zbl 0990.92033 · doi:10.1007/s002850100121
[25]Tang, S. Y.; Cheke, R. A.; Xiao, Y. N.: Optimal impulsive harvesting on non-autonomous beverton – Holt difference equations, Nonlinear anal. 65, 2311-2341 (2006) · Zbl 1119.39011 · doi:10.1016/j.na.2006.02.049
[26]Thomas, P. M.; Snell, T. W.; Joffers, M.: A control problem in a polluted environment, Math. biosci. 133, 139-163 (1996) · Zbl 0844.92026 · doi:10.1016/0025-5564(95)00091-7
[27]Zhang, T. L.; Teng, Z. D.: An SIRVS epidemic model with pulse vaccination strategy, J. theor. Biol. 250, 375-381 (2008)
[28]Liu, B.; Chen, L. S.; Zhang, Y. J.: The effects of impulsive toxicant input on a population in a polluted environment, J. biol. Syst. 11, 265-274 (2003) · Zbl 1041.92044 · doi:10.1142/S0218339003000907
[29]Liu, H. P.; Ma, Z.: The threshold of survival for system of two species in a polluted environment, J. math. Biol. 30, 49-61 (1991) · Zbl 0745.92028 · doi:10.1007/BF00168006