zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Continuous and impulsive harvesting strategies in a stage-structured predator-prey model with time delay. (English) Zbl 1172.92038

Summary: Continuous and impulsive harvesting policies are considered in a predator-prey system with stage-structure. In the case where continuous harvesting is used, it is shown that the mature predator becomes extinct under appropriate conditions. In the case where impulsive harvesting is used, using the discrete dynamical system determined by the stroboscopic map, we obtain the mature predator-eradication periodic solution of the system which is globally attractive. The conditions of permanence are established by the method of comparison involving multiple Lyapunov functions and auxiliary functions.

These results indicate that: a short period of pulse harvest is a sufficient condition for the eradication of the population; the impulsive harvest policy is more effective than the continuous one from the eradicating predator point of view. Our results offer a more economical and safe strategy in controlling pest in contrast with biological control and chemical control. Furthermore, we give a summary of the dynamic behavior when the impulsive period takes values in different intervals. Finally, numerical results show that the impulsive system we considered has more complex dynamics including quasi-periodic oscillation and chaos.

34K45Functional-differential equations with impulses
34K20Stability theory of functional-differential equations
37N25Dynamical systems in biology
93C95Applications of control theory
34K60Qualitative investigation and simulation of models
65L12Finite difference methods for ODE (numerical methods)
[1]Bainov, D. D.; Simeonov, P. S.: Impulsive differential equations: periodic solutions and applications, (1993)
[2]Cull, P.: Global stability for population models, Bull. math. Biol. 43, 47-58 (1981) · Zbl 0451.92011
[3]Debach, P.; Rosen, D.: Biological control by natural enemies, (1991)
[4]Gao, S. J.; Chen, L. S.: Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission, Discrete contin. Dyn. syst. Ser. B 7, No. 1, 77-86 (2007) · Zbl 1191.34062
[5]Gourley, A.; Kuang, Y.: A stage structured predator – prey model and its dependence on maturation delay and death rate, J. math. Biol. 49, 188-200 (2004) · Zbl 1055.92043 · doi:10.1007/s00285-004-0278-2
[6]Lakmeche, A.; Arino, O.: Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment, Dyn. contin. Discrete impuls. Syst. 7, 165-187 (2000) · Zbl 1011.34031
[7]Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[8]Liu, Z.; Tan, R.: Impulsive harvesting and stocking in a monod-Haldane functional response predator – prey system., Chaos soliton fract. 34, 454-464 (2007) · Zbl 1127.92045 · doi:10.1016/j.chaos.2006.03.054
[9]Lu, Z.; Chi, X.; Chen, L.: Global attractivity of nonautonomous stage-structured population models with dispersal and harvest, J. comput. Appl. math. 166, 411-425 (2004) · Zbl 1061.34033 · doi:10.1016/j.cam.2003.08.040
[10]Lu, Z.; Chi, X.; Chen, L.: Impulsive control strategies in biological control of pesticide, Theor. popul. Biol. 64, 39-47 (2003) · Zbl 1100.92071 · doi:10.1016/S0040-5809(03)00048-0
[11]Negi, K.; Gakkhar, S.: Dynamics in a beddington-deangelis prey – predator system with impulsive harvesting, Ecol. model. 206, 421-430 (2007)
[12]Panetta, J. C.: A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competitive environment, Bull. math. Biol. 58, 425-447 (1996) · Zbl 0859.92014 · doi:10.1007/BF02460591
[13]Pei, Y. Z.; Chen, L. S.; Zhang, Q. R.; Li, C. G.: Extinction and permanence of one-prey multi-predators of Holling type II function response system with impulsive biological control, J. thoer. Biol. 235, 503-594 (2005)
[14]Roberts, M. G.; Kao, R. R.: The dynamics of an infectious disease in a population with birth pulses, Math. biosci. 149, 23-36 (1998) · Zbl 0928.92027 · doi:10.1016/S0025-5564(97)10016-5
[15]Tang, S. Y.; Chen, L. S.: The effect of seasonal harvesting on stage-structured population models, J. math. Biol. 48, 357-374 (2004) · Zbl 1058.92051 · doi:10.1007/s00285-003-0243-5
[16]Wang, W. D.; Chen, L. S.: A predator – prey system with stage-structure for predator, Comput. math. Appl. 33, 83-91 (1997)
[17]Wang, J.; Wang, K.: The optimal harvesting problems of a stage-structured population, Appl. math. Comput. 148, 235-247 (2004) · Zbl 1037.92039 · doi:10.1016/S0096-3003(02)00840-8
[18]Xiao, Y. N.; Chen, L. S.: Modeling and analysis of a predator – prey model with disease in the prey, Math. biosci. 171, 59-82 (2001) · Zbl 0978.92031 · doi:10.1016/S0025-5564(01)00049-9
[19]Xu, R.; Chaplain, M. A. J.; Davidson, F. A.: Persistence and stability of a stage-structured predator – prey model with time delays, Appl. math. Comput. 150, 259-277 (2004) · Zbl 1064.92049 · doi:10.1016/S0096-3003(03)00226-1
[20]Zhang, X. A.; Chen, L. S.; Avidan, U. N.: The stage-structured predator – prey model and optimal harvesting policy, Math. biosci. 168, 201-210 (2000) · Zbl 0961.92037 · doi:10.1016/S0025-5564(00)00033-X
[21]Zhang, X.; Shuai, Z.; Wang, K.: Optimal impulsive harvesting policy for single population, Nonlinear anal. 4, 639-651 (2003) · Zbl 1011.92052 · doi:10.1016/S1468-1218(02)00084-6