zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global asymptotic stability of BAM neural networks with mixed delays and impulses. (English) Zbl 1173.34346
Summary: BAM neural networks with mixed delays and impulses are considered. A new set of sufficient conditions are derived by constructing suitable Lyapunov functional with matrix theory for the global asymptotic stability of BAM neural networks with mixed delays and impulses. Moreover, an example is also provided to illustrate the effectiveness of the results.
MSC:
34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
34K45Functional-differential equations with impulses
References:
[1]Cao, J.; Liang, J.; Lam, J.: Exponential stability of high-order bidirectional associative memory neural networks with time delays, Physica D 199, 425-436 (2004) · Zbl 1071.93048 · doi:10.1016/j.physd.2004.09.012
[2]Cao, J.; Song, Q.: Stability in Cohen – Grossberg-type BAM neural networks with time-varying delays, Nonlinearity 19, 1601-1617 (2006)
[3]Cao, J.; Wang, L.: Exponential stability and periodic oscillatory solution in BAM networks with delays, IEEE trans. Neural networks 13, 457-463 (2002)
[4]Chen, A.; Cao, J.; Huang, L.: Exponential stability of BAM neural networks with transmission delays, Neurocomputing 57, 435-454 (2004)
[5]Gopalsamy, K.; He, X. Z.: Delay-independent stability in bi-directional associative memory networks, IEEE trans. Neural networks 5, 998-1002 (1994)
[6]Huang, X.; Cao, J.; Huang, D. S.: LMI-based approach for delay-dependent exponential stability analysis of BAM neural networks, Chaos soliton fract. 24, 885-898 (2005) · Zbl 1071.82538 · doi:10.1016/j.chaos.2004.09.037
[7]Kosto, B.: Bi-directional associative memories, IEEE trans. Syst. man. Cyb. 18, 49-60 (1988)
[8]Li, Y. K.: Global exponential stability of BAM neural networks with delays and impulses, Chaos soliton fract. 24, 279-285 (2005) · Zbl 1099.68085 · doi:10.1016/j.chaos.2004.09.027
[9]Liao, X.; Liao, Y.; Liao, Y.: Stability of bi-directional associative memory neural networks with delays, J. electron. 15, 372-377 (1998)
[10]Lou, X. Y.; Cui, B. T.: Global asymptotic stability of delay BAM neural networks with impulses, Chaos soliton fract. 29, 1023-1031 (2006) · Zbl 1142.34376 · doi:10.1016/j.chaos.2005.08.125
[11]Lou, X. Y.; Cui, B. T.: Global asymptotic stability of delay BAM neural networks with impulses based on matrix theory, Appl. math. Model. 32, 232-239 (2008) · Zbl 1141.93399 · doi:10.1016/j.apm.2006.11.015
[12]Park, Ju H.: Robust stability of bidirectional associative memory neural networks with time delays, Phys. lett. A 349, 494-499 (2006)
[13]Park, Ju H.; Park, C. H.; Kwon, O. M.; Lee, S. M.: A new stability criterion for bidirectional associative memory neural networks of neutral-type, Appl. math. Comput. 199, 716-722 (2008) · Zbl 1149.34345 · doi:10.1016/j.amc.2007.10.032
[14]Song, Q.; Cao, J. D.: Global exponential stability of bidirectional associative memory neural networks with distributed delays, J. comput. Appl. math. 202, 266-279 (2007) · Zbl 1120.34061 · doi:10.1016/j.cam.2006.02.031
[15]Song, Q.; Cao, J. D.: Dynamics of bidirectional associative memory networks with distributed delays and reaction – diffusion terms, Nonlinear anal. RWA 8, 345-361 (2007) · Zbl 1114.35103 · doi:10.1016/j.nonrwa.2005.08.006
[16]Song, Q.; Wang, Z.: An analysis on existence and global exponential stability of periodic solutions for BAM neural networks with time-varying delays, Nonlinear anal. RWA 8, 1224-1234 (2007) · Zbl 1125.34050 · doi:10.1016/j.nonrwa.2006.07.002
[17]Q. Song, J.D. Cao, Exponential stability for impulsive BAM neural networks with time-varying delays and reaction – diffusion terms, Adv. Differ. Equations, (2007), doi:10.1155/2007/78160, (Article ID 78160, 18 pages). · Zbl 1159.35440 · doi:10.1155/2007/78160
[18]Zhou, Q.: Global exponential stability of BAM neural networks with distributed delays and impulses, Nolinear anal. RWA 10, 144-153 (2009) · Zbl 1154.34391 · doi:10.1016/j.nonrwa.2007.08.019