zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approximation of eigenvalues in mixed form, discrete compactness property, and application to hp mixed finite elements. (English) Zbl 1173.65349
Summary: We discuss the Discrete Compactness Property (DCP) which is a well-known tool for the analysis of finite element approximations of Maxwell’s eigenvalues. We restrict our presentation to Maxwell’s eigenvalues, but the theory applies to more general situations and in particular to mixed finite element schemes that can be written in the framework of de Rham complex and which enjoy suitable compactness properties. We investigate the relationships between DCP and standard mixed conditions for the good approximation of eigenvalues. As a consequence of our theory, the convergence analysis of the rectangular hp version of Raviart-Thomas finite elements for the approximation of Laplace eigenvalues is presented as a corollary of the analogous result for hp edge elements applied to the approximation of Maxwell’s eigenvalues [D. Boffi, M. Costabel, M. Dauge and L. Demkowicz, SIAM J. Numer. Anal. 44, No. 3, 979–1004 (2006; 1122.65110)].
65N25Numerical methods for eigenvalue problems (BVP of PDE)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)