zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Gabor dual spline windows. (English) Zbl 1174.42038
Author’s abstract: A method is presented for constructing dual Gabor window functions that are polynomial splines. The spline windows are supported in [-1,1], with a knot at x=0, and can be taken C m smooth and symmetric. The translation and modulation parameters satisfy a=1 and 0<b1/2. The full range 0<ab<1 is handled by introducing an additional knot. Many explicit examples are found.
MSC:
42C15General harmonic expansions, frames
References:
[1]Christensen, O.: An introduction to frames and Riesz bases, (2003)
[2]Christensen, O.: Frames and bases: an introductory course, Appl. numer. Harmon. anal. (2008)
[3]Christensen, O.: Pairs of dual Gabor frame generators with compact support and desired frequency localization, Appl. comput. Harmon. anal. 20, 403-410 (2006) · Zbl 1106.42030 · doi:10.1016/j.acha.2005.10.003
[4]Christensen, O.; Kim, R. Y.: Pairs of explicitly given dual Gabor frames in L2(Rd), J. Fourier anal. Appl. 12, 243-255 (2006) · Zbl 1096.42015 · doi:10.1007/s00041-005-5052-3
[5]O. Christensen, R.Y. Kim, On dual Gabor frame pairs generated by polynomials, J. Fourier Anal. Appl., in press · Zbl 1210.42048 · doi:10.1007/s00041-009-9074-0
[6]Christensen, O.; Laugesen, R. S.: Approximately dual frame pairs in Hilbert spaces and applications to Gabor frames, preprint, (2008)
[7]Daubechies, I.; Grossmann, A.; Meyer, Y.: Painless nonorthogonal expansions, J. math. Phys. 27, 1271-1283 (1986) · Zbl 0608.46014 · doi:10.1063/1.527388
[8], Appl. numer. Harmon. anal. (1998)
[9]Gröchenig, K.: Foundations of time – frequency analysis, Appl. numer. Harmon. anal. (2001) · Zbl 0966.42020
[10]Janssen, A. J. E.M.: The duality condition for Weyl – Heisenberg frames, Appl. numer. Harmon. anal., 33-84 (1998) · Zbl 0890.42006
[11]Lemvig, J.: Constructing pairs of dual bandlimited framelets with desired time localization, Adv. comput. Math. 30, No. 3, 231-247 (2009) · Zbl 1166.42020 · doi:10.1007/s10444-008-9066-7