[1] | Blumensath, T.; Davies, M.: Iterative thresholding for sparse approximations, J. Fourier anal. Appl. 14, No. 5, 629-654 (2008) · Zbl 1175.94060 · doi:10.1007/s00041-008-9035-z |

[2] | T. Blumensath, M. Davies, A simple, efficient and near optimal algorithm for compressed sensing, in: Proceedings of the Int. Conf. on Acoustics, Speech and Signal Processing, 2009 |

[3] | Candès, E.; Romberg, J.: Quantitative robust uncertainty principles and optimally sparse decompositions, Found. comput. Math. 6, No. 2, 227-254 (2006) · Zbl 1102.94020 · doi:10.1007/s10208-004-0162-x |

[4] | Candès, E.; Romberg, J.; Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE trans. Inform. theory 52, No. 2, 489-509 (2006) · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083 |

[5] | Candès, E.; Romberg, J.; Tao, T.: Stable signal recovery from incomplete and inaccurate measurements, Comm. pure appl. Math. 59, No. 8, 1207-1223 (2006) · Zbl 1098.94009 · doi:10.1002/cpa.20124 |

[6] | Dai, W.; Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction, IEEE trans. Inform. theory 55, No. 5, 2230-2249 (2009) |

[7] | Donoho, D.: Compressed sensing, IEEE trans. Inform. theory 52, No. 4, 1289-1306 (2006) |

[8] | Gorodnitsky, I. F.; George, J. S.; Rao, B. D.: Neuromagnetic source imaging with focuss: A recursive weighted minimum norm algorithm, Neurophysiology 95, No. 4, 231-251 (1995) |

[9] | N.G. Kingsbury, T.H. Reeves, Iterative image coding with overcomplete complex wavelet transforms, in: Proc. Conf. on Visual Communications and Image Processing, 2003 |

[10] | Mallat, S.; Davis, G.; Zhang, Z.: Adaptive time – frequency decompositions, SPIE J. Opt. eng. 33, No. 7, 2183-2191 (1994) |

[11] | Mendelson, S.; Pajor, A.; Tomczak-Jaegermann, N.: Reconstruction and subgaussian operators in asymptotic geometric analysis, Geom. funct. Anal. 17, 1248-1282 (2007) · Zbl 1163.46008 · doi:10.1007/s00039-007-0618-7 |

[12] | Mendelson, S.; Pajor, A.; Tomczak-Jaegermann, N.: Uniform uncertainty principle for Bernoulli and subgaussian ensembles, Constr. approx. 28, No. 3, 277-289 (2008) · Zbl 1230.46011 · doi:10.1007/s00365-007-9005-8 |

[13] | Needell, D.; Tropp, J. A.: Cosamp: iterative signal recovery from incomplete and inaccurate samples, Appl. comput. Harmon. anal. 26, No. 3, 301-321 (2009) · Zbl 1163.94003 · doi:10.1016/j.acha.2008.07.002 |

[14] | Needell, D.; Vershynin, R.: Signal recovery from incomplete and inacurate measurements via regularized orthogonal matching pursuit |

[15] | Needell, D.; Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit, Found. comput. Math. 9, 317-334 (2009) · Zbl 1183.68739 · doi:10.1007/s10208-008-9031-3 |

[16] | Nyquist, H.: Certain topics in telegraph transmission theory, Trans. A.I.E.E., 617-644 (1928) |

[17] | M. Rudelson, R. Vershynin, Sparse reconstruction by convex relaxation: Fourier and gaussian measurements, in: 40th Annual Conference on Information Sciences and Systems, 2006 |

[18] | Shannon, C. A.; Weaver, W.: The mathematical theory of communication, (1949) · Zbl 0041.25804 |

[19] | Tropp, J. A.; Gilbert, A. C.: Signal recovery from partial information via orthogonal matching pursuit, IEEE trans. Inform. theory 53, No. 12, 4655-4666 (2006) |

[20] | Vetterli, M.; Marziliano, P.; Blu, T.: Sampling signals with finite rate of innovation, IEEE trans. Signal process. 50, No. 6, 1417-1428 (2002) |